
Ankur Kumar

A short beginner’s guide to deep learning-based

computer vision and abnormal sound detection

ML for Process Industry Series

2024 Edition

Machine Learning in Python for

Visual and Acoustic Data-based

Process Monitoring

Machine Learning in Python

for Visual and Acoustic

Data-based Process

Monitoring

A short beginner’s guide to deep learning-based

computer vision and abnormal sound detection

Ankur Kumar

`

Dedicated to my spouse, family, friends, motherland, and all the data-science enthusiasts

`

विद्या प्रशस्यते लोक ैः विद्या सिवत्र गौरिा ।

विद्यया लभते सिं विद्वान सिवत्र पूज्यते ।।

Knowledge is extolled everywhere,

 knowledge is considered great everywhere;

One can attain everything with the help of knowledge,

and a knowledged person is respected everywhere .

- A popular Sanskrit shloka

`

Machine Learning in Python for Visual and Acoustic Data-based Process
Monitoring

www.MLforPSE.com

Copyright © 2024 Ankur Kumar

All rights reserved. No part of this book may be reproduced or transmitted in any form or in
any manner without the prior written permission of the authors.

.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented and obtain permissions for usage of copyrighted materials.

However, the authors make no warranties, expressed or implied, regarding errors or
omissions and assume no legal liability or responsibility for loss or damage resulting from

the use of information contained in this book.

Plant image on cover page obtained from https://pixabay.com/.
.

To request permissions, contact the authors at MLforPSE@gmail.com

First published: May 2024

http://www.mlforpse.com/

`

About the Author

Ankur Kumar holds a PhD degree (2016) in Process Systems Engineering from

the University of Texas at Austin and a bachelor’s degree (2012) in Chemical

Engineering from the Indian Institute of Technology Bombay. He currently works

at Linde in the Advanced Digital Technologies & Systems Group in Linde’s Center

of Excellence, where he has developed several in-house machine learning-based

monitoring and process control solutions for Linde’s hydrogen and air-separation

plants. Ankur’s tools have won several awards both within and outside Linde. One

of his tools, PlantWatch (a plantwide fault detection and diagnosis tool), received

the 2021 Industry 4.0 Award by the Confederation of Industry of the Czech Republic. Ankur has

authored or co-authored several peer-reviewed journal papers (in the areas of data-driven

process modeling and monitoring), is a frequent reviewer for many top-ranked Journals, and has

served as Session Chair at several international conferences. Ankur served as an Associate

Editor of the Journal of Process Control from 2019 to 2021, and currently serves on the Editorial

Advisory Board of Industrial & Engineering Chemistry Research Journal. Most recently, he was

included in the ‘Engineering Leaders Under 40, Class of 2023‘ by Plant Engineering Magazine.

`

 Note to the readers

Jupyter notebooks and Python scripts with complete code implementations are available for

download at github.com/ML-PSE/Machine_Learning_with_Visual_Acoustics_Process_Data.

Code updates when necessary, will be made and updated on the GitHub repository. Updates to

the book’s text material will be available on Leanpub (www.leanpub.com) and Google Play

(https://play.google.com/store/books). We would greatly appreciate any information about any

corrections and/or typographical errors in the book.

https://github.com/ML-PSE/Machine_Learning_with_Visual_Acoustics_Process_Data
http://www.leanpub.com/
https://play.google.com/store/books

`

Series Introduction

In the 21st century, data science has become an integral part of the work culture in the

manufacturing industry and process industry is no exception to this modern phenomenon. From

process monitoring to predictive maintenance, fault diagnosis to advanced process control,

machine learning-based solutions are being used to achieve higher process reliability and

efficiency. However, few books are available that adequately cater to the needs of budding

process data scientists. The scant available resources include: 1) generic data science books

that fail to account for the specific characteristics and needs of process plants 2) process domain-

specific books with rigorous and verbose treatment of underlying mathematical details that

become too theoretical for industrial practitioners. Understandably, this leaves a lot to be desired.

Books are sought that have process systems in the backdrop, stress application aspects, and

provide a guided tour of ML techniques that have proven useful in process industry. This series

‘Machine Learning for Process Industry’ addresses this gap to reduce the barrier-to-entry for

those new to process data science.

The first book of the series ‘Machine Learning in Python for Process Systems Engineering’

covers the basic foundations of machine learning and provides an overview of broad spectrum of

ML methods primarily suited for static systems. Step-by-step guidance on building ML solutions

for process monitoring, soft sensing, predictive maintenance, etc. are provided using real process

datasets. Aspects relevant to process systems such as modeling correlated variables via

PCA/PLS, handling outliers in noisy multidimensional datasets, controlling processes using

reinforcement learning, etc. are covered. The second book of the series ‘Machine Learning in

Python for Dynamic Process Systems’ focuses on dynamic systems and provides a guided

tour along the wide range of available dynamic modeling choices. Emphasis is paid to both the

classical methods (ARX, CVA, ARMAX, OE, etc.) and modern neural network methods.

Applications on time series analysis, noise modeling, system identification, and process fault

detection are illustrated with examples. The third book of the series ‘Machine Learning in

Python for Process and Equipment Condition Monitoring, and Predictive Maintenance’

takes a deep dive into an important application area of ML, viz, prognostics and health

management. ML methods that are widely employed for the different aspects of plant health

management, namely, fault detection, fault isolation, fault diagnosis, and fault prognosis, are

covered in detail. Emphasis is placed on conceptual understanding and practical

implementations. This fourth book of the series is a quick foray into the world of deep learning-

based computer vision and abnormal equipment sound detection. The readers are introduced to

the ease with which powerful equipment and product quality monitoring solutions can be built

using sound and visual data. Future books of the series will continue to focus on other aspects

and needs of process industry. It is hoped that these books can help process data scientists find

innovative ML solutions to the real-world problems faced by the process industry.

`

With the growing trend in usage of machine learning in the process industry, there is growing

demand for process domain experts/process engineers with data science/ML skills. These books

have been written to cover the existing gap in ML resources for such process data scientists.

Specifically, books of this series will be useful to budding process data scientists, practicing

process engineers looking to ‘pick up’ machine learning, and data scientists looking to understand

the needs and characteristics of process systems. With the focus on practical guidelines and

industrial-scale case studies, we hope that these books lead to wider spread of data science in

the process industry.

`

Other book(s) from the series

(https://MLforPSE.com/books/)

`

Preface

In today’s world, it is hard to be unaware of the remarkable advances artificial intelligence has

been making; new AI tools come up every day (such as ChatGPT, Sora, etc.) that change the

way we interact with machines and the world around us. Thankfully, the process industry is

not lagging behind in riding this wave of digital innovations. ‘Smart manufacturing’ and

‘digitalization’ are the governing mantras among the industry executives. Under the broad

umbrella of Industry 4.0, data-driven solutions are increasingly being deployed to optimize

and monitor every step along a production line. There is a general consensus that every single

bit of data is a resource which needs to be utilized to obtain better process insights. In this

context, to assist young process data scientists (PDSs) get onto this ‘AI for process industry’

bandwagon, the previous books of the series covered how ML-based plant health

management solutions are built using traditional process data (such as flow, temperature,

pressure, etc.). This book provides a cursory coverage of how visual and acoustic process

data are utilized for process monitoring. The justification for using visual and acoustic process

data is straightforward: an experienced technician can infer a machine fault by listening to the

sound it is making and promptly catch a product quality issue by looking at the final product.

Tools like ChatGPT have shown that artificial neural networks can be imparted human-like

intelligence via deep learning (DL). Correspondingly, enterprises are deploying DL-based

computer vision (CV) and acoustic monitoring to boost the automated surveillance of

manufacturing plants while reducing labor costs. Although (scattered) resources are available

on internet on DL-based visual and acoustic analytics, the learning curve can be steep for a

beginner PDS. Therefore, this book provides an introduction to how computer vision and

acoustic monitoring solutions are built using deep learning for a manufacturing plant.

Computer vision and acoustic analysis are, inarguably, specialized fields of practice;

developing ML solutions using visual and acoustic data require careful feature engineering by

experts. Fortunately, the rise of deep learning has made the task of PDSs easier. The same

DL concepts that are used to estimate the RUL of failing machines (as we saw in the previous

books of the series) can be used for building CV and abnormal sound detection (ASD)

solutions without explicit feature engineering. However, deep learning-based CV (and ASD)

can be scary if you are a beginner: you may find that your PC is not powerful enough to train

the neural network; you may get overwhelmed with the different modeling paradigms (and

different terms like LeNet, AlexNet, ResNet, etc.); you may find it strange that using pre-

trained models (via transfer learning) is the dominant approach for quickly developing CV

solutions. Therefore, this short book is to help you take your first step and provide you with

enough familiarity to enable you to navigate the DL-based CV and ASD world confidently.

`

The broad objectives of the book can be summarized as follows:

• provide familiarity to deep learning-based computer vision and equipment acoustic

monitoring

• provide a gentle introduction to CNNs

• provide a quick introduction to Google Colab as the environment for computationally

intensive ANN training

• showcase applications of computer vision for steel product fault classification

• showcase application of acoustic monitoring for air compressor fault classification

Computer vision and equipment acoustic-based process monitoring are not yet among the

mainstream technologies employed in process industry. Therefore, a conscious decision was

made to keep this book at the beginner level and not weigh readers down with too many

advanced concepts which can become overwhelming. Complete code implementations have

been provided in the GitHub repository. We are quite confident that this text will get the

beginner PDSs excited about these technologies, and encourage them to build upon the

concepts gained from the book and develop interesting monitoring solutions for their

manufacturing facilities.

Who should read this book

This book is meant to give an introductory coverage of convolutional neural networks and its

applications for computer vision and equipment acoustic monitoring. The following categories

of readers will find the book useful:

1) Process data scientists new to the field of computer vision and acoustic monitoring

2) Practicing process data scientists looking for an introductory resource on CNNs

3) Process engineers or process engineering students making their entries into the world

of data science

Pre-requisites

Prior experience with machine learning, Python, and artificial neural networks is assumed.

`

Table of Contents

Chapter 1: Introduction to Process Monitoring via Computer Vision and Abnormal
 Sound Detection 1

1.1 Process Monitoring Techniques

1.2 CV Workflow in Manufacturing Environment

1.3 ASD Workflow in Manufacturing Environment

Chapter 2: Convolutional Neural Networks 11

2.1 CNNs: An Introduction

2.2 A Simple CNN for Handwritten Digit Recognition

2.3 Evolution of CNNs

Chapter 3: CNN Training Environment 25

3.1 Introduction to Google Colab

 -- Saving notebook and model

Chapter 4: Automated Product Quality Inspection via Computer Vision 29

4.1 NEU Steel Defect Dataset

4.2 Steel Defect Classification Modeling from Scratch

4.3 Steel Defect Classification Modeling via Transfer Learning

Chapter 5: Automated Equipment Monitoring Using Sound 42

5.1 Air Compressor Sound Dataset

5.2 Abnormal Equipment Sound Classification using Support Vector Machines

5.3 Abnormal Equipment Sound Classification using CNN

1

Chapter 1
Introduction to Process Monitoring via Computer

Vision and Abnormal Sound Detection

t is not easy to ensure continuous reliable plant operations with optimal efficiency and high

product quality standards; dedicated teams of plant operators and engineers work round

the clock to efficiently run manufacturing plants. In Industry 4.0 era, there has been an

enhanced push to digitalize plant operations to lighten the burden of plant personnel. Most of

the modern production facilities employ hundreds of sensors to keep a tab on plant operations

in real-time. Furthermore, smart digital process monitoring tools are utilized to continuously

monitor plant performance. Sensors that provide flow, temperature, pressure, level,

composition, and vibration measurements have traditionally been employed by process

industry. In recent times, image and sound sensors are increasingly being employed to aid

plant health management. The justification behind this trend is simple: an expert technician

can often immediately tell if an equipment needs maintenance by listening to the sound it is

making or if product quality has been compromised by looking at the product. Therefore, smart

ML solutions are being built that utilize the image and sound data, and mimic the intelligence

of expert technicians.

The emergence of deep learning has given wings to the field of computer vision (CV) which

is field of artificial intelligence that enables computers to make inferences using visual inputs.

Automated quality inspection is one such popular application of CV. CV techniques find usage

in analysis of equipment sound as well and has enabled abnormal sound detection (ASD)-

based predictive maintenance solutions. Inarguably, CV and acoustic signal analysis are

highly specialized areas; however, deep learning enables development of CV and ASD

solutions using raw data directly and bypassing the need for explicit feature engineering

(which often requires subject matter expertise). Correspondingly, CV and acoustic monitoring

have become critical components of a modern process data scientist’s toolkit.

While previous books of the series have focused on plant health management using traditional

signals, this short book provides an introduction to deep learning-based CV and ASD. The

current chapter covers the following topics

• Introduction to process monitoring techniques

• CV use cases and workflow

• ASD use cases and workflow

I

MLforPSE.com|2

1.1 Process Monitoring Techniques

Process plants are prone to different types of failures; plants may experience pipe leaks,

motor bearing issues, heat exchanger fouling, sensor failures, equipment surface hotspots,

valve failures, etc. Consequently, different techniques have been devised over the years to

monitor the ‘health’ of plant equipment using different types of sensors. Figure 1.1 lists some

of these commonly employed techniques in the process industry. The methods include,

amongst others, usage of transducers to monitor machine vibrations and comparing process

stream conditions (flow, temperature, pressure, etc.) against expected values. Within this list

lie the practices of just ‘looking’ at and ‘listening’ to the plant equipment. In the pre-computer

era, plant operators would go around the plant and visually inspect plant equipment and listen

to the ‘plant sound’. Well, these practices are making a comeback with a twist that the ‘looking’

and ‘listening’ are done by computers. While cameras and microphones act as eyes and ears,

the deep learning algorithms mimic the human intelligence of plant operators in inferring the

presence of abnormalities.

Figure 1.1: Common process/equipment condition monitoring techniques

Vibration monitoring

• Transducers are used to measure to-and-

fro motion of rotating machines

• Mechanical issues lead to high vibrations

Thermography

monitoring
• Infrared cameras are used to detect hot

spots on equipment surfaces

• Equipment failures are often preceded by

temperature changes

Sound monitoring

• Microphones are used to record

sound generated by machines

• Failures are often preceded by

abnormal sound pattern

Process performance monitoring

• Process stream conditions (flow,

pressure, etc.) are tracked

• Performance KPIs (e.g., efficiency) are

computed and tracked

Motor current analysis

• The current draw of motors is recorded

and analyzed

• Failures are often preceded by abnormal

current signatures

Oil analysis

• Used to track condition of lubricants

• Metal particles in lubricants used as

indicator of defects in gears, bearings, etc.

Image analysis

• Cameras are used to capture

images of equipment and products

• Equipment cracks, product defects

are detected

Alarms & operator action analysis

• DCS alarms and operator actions

are analyzed for process health

analysis

Acoustic emission analysis

Ultrasound sensors are used to

detect leaks in pipes, valves, etc.

Ultrasound analysis

• Acoustic emission sensors are used

to catch very high frequency signals

• Used for detection of pipelines

leakages, bearing defects, etc.

MLforPSE.com|3

Using cameras and microphones to monitor an equipment are attractive due to the non-

intrusive nature of these sensors: equipment does not have to be taken offline for installation

of these sensors. Figure 1.2 shows a few use-cases of computer vision in manufacturing.

Figure 1.2: Examples of computer vision use cases in manufacturing1

The use-cases shown in Figure 1.2 fall in the category of image

classification. Object detection and image segmentation are two other

popular tasks performed through computer vision.

Like CV, acoustic monitoring has found several use-cases in process industry as well; Figure

1.3 shows some of them. When equipment such as motors experience mechanical issues

(misalignment, looseness, imbalance, etc.), they produce abnormal sound; these abnormal

sound patterns act as leading indicators of impending failures. Consequently, predictive

maintenance applications are often built using equipment acoustics.

1 Steel strip images made available at http://faculty.neu.edu.cn/songkechen/zh_cn/zhym/263269/list/index.htm by Prof. Ke-Chen

Song at Northeastern University, China.
PCB images are publicly available at https://github.com/Ironbrotherstyle/PCB-DATASET.
Casting product images are made available under CC BY-NC-ND 4.0 license by
Ravirajsinh Dabhi at https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product/data.

scratch patch

classification of defects in

steep strips

classification of defects in

printed circuit boards

missing hole short Good Defective

casting product quality

inspection

Object detection

Identify and locate objects

of interest within an image

missing

holes

Image segmentation

detection

Classify each pixel of image to

the different classes of interest

short

relevant

pixels

identified

http://faculty.neu.edu.cn/songkechen/zh_cn/zhym/263269/list/index.htm
https://github.com/Ironbrotherstyle/PCB-DATASET
https://creativecommons.org/licenses/by-nc-nd/4.0/

MLforPSE.com|4

Figure 1.3: Examples of acoustics-based condition monitoring in process industry

detection of mechanical

issues in motors

detection of abnormal distillation

column operations (such as

flooding)

detection of pipeline

leakages via high-frequency

acoustic sensors

Process monitoring in the deep learning era

Computer vision and acoustic monitoring owe the resurgence in their usage for plant

health management due to the recent computational advances in deep learning. Deep

learning allows features to be extracted automatically from raw data and therefore has

significantly changed how process data are analyzed for insights. Technically, deep

learning refers to usage of artificial neural networks with several hidden layers. Over the

last decade, several algorithmic innovations have taken place that have made deep

learning computationally tractable.

In addition to the enhanced tractability of deep models’ training, the emergence of user-

friendly frameworks such as Keras and PyTorch that allow creation of deep neural

networks quickly in just a few lines of code has led to democratization of process data

science.

Innovations that contributed to

deep learning success

MLforPSE.com|5

1.2 CV Workflow in Manufacturing Environment

Figure 1.4 below shows a typical workflow for automated visual inspection. As is evident, the

workflow is the same as any other ML exercise.

Figure 1.4: Typical computer vision workflow in manufacturing environment2

Arguably, the most critical phase in this workflow is acquisition of high-quality images. As

shown in Figure 1.4, elaborate optical illumination platform is often setup to ensure high

contrast images with minimal interference of environmental light. Acquired images are then

sent for pre-processing to improve image quality and help CV models understand the images

better. During model training, the common pre-processing steps include image resizing,

augmentations, denoising, etc. Many CV models have strict specification for the input image

size and therefore images are resized accordingly. Image augmentation entails artificial

generation of new images using the original input images. This helps to overcome the

limitations of small-sized datasets. DL models are ‘data-hungry’ and in the manufacturing

industry world, you will rarely have a large-sized dataset. Therefore, you will often use

techniques such as cropping, rotation, zooming, etc., to create different versions of your

images to train your DL model. Post pre-processing, images are used to train models. The

most common architecture employed for CV tasks is convolutional neural network which

specialize in handling grid-like data. We will talk more about CNNs in Chapter 2.

2 Camera Unit/Light picture taken from Lv et al., Deep Metallic Surface Defect Detection: The New Benchmark and
Detection Network. Sensors, 2020 shared under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

In
sigh

ts

Image acquisition Model building

image database

image image pre-

processing

model training

Model inference

image pre-

processing

CNN Model

MLforPSE.com|6

Working with images in Python

An image is simply a grid of numbers for computers. Consider the following grayscale

image (taken from MINIST dataset provided in Keras) of size 28 X 28 pixels.

A color image has three of these 2D channels corresponding to the Red, Green, and

Blue components.

• each pixel takes a value (between 0 and 255) denoting

the intensity of light

.

28 X 28

28 X 28 X 3

• each pixel is assigned a tuple of 3 values corresponding to the

red, green, and blue components, respectively

• E.g., (0,0,0) ⇒ black pixel

 (255,0,0) ⇒ red pixel

 (255, 255, 255) ⇒ white pixel

The standard Python library for image manipulation is Pillow which is an updated

version of PIL (Python image library) library. Other popular options for image handling

in Python are OpenCV and Keras API. The examples below show how to load,

manipulate, and show images using Pillow and Matplotlib.

.

28 X 28 Numpy

 array

28 X 28 X 3

Numpy array

MLforPSE.com|7

load image using Pillow
from PIL import image
img = Image.open('digit_color.jpeg')
print(img.size)

>>> (28, 28)
img.show() # displays image using your computer's default application for photos

construct NumpPy array from image object
import numpy as np
imgData = np.asarray(img)
print(imgData.shape)

>>> (28, 28, 3)

resize image and save
img_resized = img.resize((7,7)) # from 28 X 28 pixels to 7 X 7 pixels
img_resized.save('digit_color_resized.jpeg')

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load image as NumPy array directly using Matplotlib
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
from matplotlib import image, pyplot
imgData2 = image.imread('digit_color.jpeg') # loads image as a 3D NumPy array
pyplot.imshow(img) # displays image within a Matplotlib frame

MLforPSE.com|8

1.3 ASD Workflow in Manufacturing Environment

Consider the following two sound clips recorded from a faulty and a healthy air compressor.

Go ahead and execute the shown code with the sound clips3 (code provided in the GitHub

repository). Do you hear any difference in how the two machines sound? The difference is

very obvious. However, how do you make a computer understand this difference? A sound is

simply vibrations captured by air; therefore, the techniques that we learnt in Book 3 of the

series for extracting features from a vibration signal can be utilized to analyze a sound signal.

Alternatively, the time waveform or the spectrogram of the sound data can be passed as an

input to a DL model to make inference about the equipment condition. The workflows shown

in Figure 1.5 below summarize the above approaches.

Figure 1.5: Approaches for equipment sound monitoring

3 Sound clips taken from https://www.iitk.ac.in/idea/datasets/. Verma et. al, Intelligent Condition Based Monitoring
using Acoustic Signals for Air Compressors, IEEE Transactions on Reliability, 2016.

healthy

faulty

-- mean

-- spread

-- peak

⋮

waveform spectrogram features

Fau
lt / N

o
 fau

lt

traditional approach with manual feature engineering)

Deep learning-based approach

waveform spectrogram

Fau
lt / N

o
 fau

lt

CNN Model

https://www.iitk.ac.in/idea/datasets/

MLforPSE.com|9

You may be surprised to see a CNN show up in the ASD workflow as well! Well, spectrograms

can be treated as images and therefore analyzed using CNNs. We will work through one such

application in Chapter 5.

Working with audio data in Python

Several Python libraries are available to handle audio files. Among these, Librosa is a

popular library with several advanced modules to analyze acoustic signals. Using Librosa,

you can analyze an audio signal in time domain, frequency domain, and time-frequency

domain as shown below.

load audio data
import numpy as np, matplotlib.pyplot as plt

import librosa

clipPath = "AirCompressor_Data/Healthy/preprocess_Reading1.dat"

data = np.loadtxt(clipPath, delimiter=',')

log-mel spectrogram (popular for analyzing audio signals)

sr = 50000/3 # sampling rate: 50000 samples per 3 seconds

mel_spectrogram = librosa.feature.melspectrogram(y=data, sr=sr, n_mels=64)

log_mel_spectrogram = librosa.power_to_db(mel_spectrogram)

plt.figure()

img = librosa.display.specshow(log_mel_spectrogram, x_axis="time", y_axis="mel", sr=sr)

plt.colorbar(), plt.title('log-mel spectrogram')

MLforPSE.com|10

Summary

This chapter impressed upon you the importance of computer vision and acoustic monitoring

for plant health management. We familiarized ourselves with the typical workflows for

analyzing visual and audio data obtained from a process plant, and looked at the available

Python resources for handling such data. In the next chapter, we will look at the neural network

architecture that powers the human-like machine intelligence for analyzing images and sound

signals.

11

Chapter 2
Convolutional Neural Networks

NN is the standard artificial neural network architecture for working with visual data

such as images and videos. Gone are the days of explicit feature engineering with

image data; CNNs are designed to automatically extract features and have, therefore,

revolutionized the field of computer vision. Just like RNNs excel at handling data that exhibit

temporal correlation, CNNs excel at extracting spatial correlations efficiently. CNNs had their

first limelight moment with the introduction of LeNet architecture in the 1990s for recognition

of handwritten numbers. Since then, several architectural innovations and deep learning

advances have made CNNs super-powerful; these CNNs power modern self-driving cars,

real-time face recognition, motion tracking, etc. Several books can be written on the topic of

CNN architecture; however, the focus in the chapter is to provide an introductory treatment.

CNN architectures are built using several basic layers such as convolutional layers, pooling

layers, and fully connected layers. We will study about these layers and the various associated

hyper-parameters (such as filter strides, padding type, etc.). Specifically, the following topics

are covered

• Introduction to CNN, convolutional layer, and pooling layer

• Structure of a typical CNN

• A simple CNN for recognition of handwritten numbers

• Evolution of CNN architecture

C

MLforPSE.com|12

2.1 CNNs: An Introduction

CNNs (convolutional neural networks) are one of the most popular types of neural networks

and are inspired by how a human brain processes visual objects. As shown in Figure 2.1,

pixels in a small local region of an image are combined to generate a feature value in the first

layer of the network. The features from the first layer are further combined to generate higher-

level features. Upon training, the network learns to extract low-level features such as edges,

textures in the early network layers which are combined progressively to form high-level

features, providing the network a comprehensive understanding of the image. At the end of

the network, a fully connected layer in combination with a sigmoid layer provides the output

label for the image (in an image classification problem). CNNs get their name from the

convolutional layers which form the backbone of these networks. However, as shown in Figure

2.1b, there are other types of layers as well in a CNN. Let’s briefly familiarize ourselves with

these commonly employed layers.

Figure 2.1: (a) Feature extraction in CNN (b) A simple CNN architecture4

4 Diagram shard under the Creative Commons Attribution-Share Alike 4.0 International license by Aphex34
(https://commons.wikimedia.org/wiki/File:Typical_cnn.png)

⋯

convolution

feature extraction

convolution

local region a pixel/value on the feature map

s

i

g

m

o

i

d

output

(a)

(b)

pooling pooling fully

connected

feature maps
feature

maps

feature

maps

https://creativecommons.org/licenses/by-sa/4.0/deed.en

MLforPSE.com|13

Convolutional layer

In a convolutional layer, a local region from the incoming feature map (or input image) gets

mapped to a value in the outgoing feature map via a convolutional filter.

.

Figure 2.2: A convolutional layer with a single filter

In the above figure, the filter is a 2D matrix that slides over the incoming feature map in

horizontal and vertical directions as shown below

Figure 2.3: Convolution operation (concept behind padding is covered later)

*

0 1 1
2

2
-1

-1
0
0 filter activation

*

0 x (0) + 0 x (1) + 0 x (1) +

0 x (2) + 2 x (-1) + 2 x (0) +

0 x (-1) + 2 x (2) + 1 x (0) = 2

2

Bias
Filter: 3 x 3

*

0 x (0) + 0 x (1) + 0 x (1) +

2 x (2) + 2 x (-1) + 1 x (0) +
2 x (-1) + 1 x (2) + 0 x (0) = 2

2

*

2 x (0) + 2 x (1) + 1 x (1) +

2 x (2) + 1 x (-1) + 0 x (0) +

2 x (-1) + 0 x (2) + 1 x (0) = 4

2

element-wise multiplication
filter slides to the right by

one step

filter slides down by one step

Zeroes padded

along the

boundary of the

original feature

map (shaded in

blue)

MLforPSE.com|14

The entire feature map is scanned using the same filter. The output of the above convolutional

operation is a feature map. In the above illustration, the convolutional operation employed 10

trainable parameters (9 filter weights and 1 bias). In practice, one filter is not sufficient to

extract all the features from the incoming feature map and therefore, multiple filters are

employed to generate multiple output feature maps as shown below.

Figure 2.4: A convolutional layer with multiple filters

Each of the filters in the above illustration has its own set of weights and bias. Therefore, for

a kernel size 3 X 3, the total number of parameters becomes 40. Now consider a convolutional

layer handling a color image (which, as we know, has 3 channels) or the multichannel

convolutional output from the above illustration. How does the convolutional operation work

now? Well, in this case, the filter becomes a 3D matrix with the same number of channels as

that in the incoming input. As before, each value in the output feature map involves element-

wise multiplications between the filter and the corresponding (3D) local region of the incoming

input.

Figure 2.5: A convolutional layer with a single multichannel filter

*

0 1 1
2

2
-1

-1
0
0

filter 1

activation

0 1 1
1

2
-1

-1
1
0

filter 2

2 1 1
2

2
-1

-1
0
0

filter 3

0 1 2
2

2
-1

-1
0
0

filter 4

fro
m

 filter 4

* filter activation

MLforPSE.com|15

Figure 2.6: A convolutional layer with 4 filters handling 3-channeled input

It is common to choose filters of size 5X5 or 3X3. Note that the number

of channels of a filter is the same as the number of incoming feature

maps. Also, the number of filters used is generally increased as one

goes deeper into the network (such as 64 filters in the first layer, then

128, then 256, and so on).

Strides

In Figure 2.3, we saw that the filter moved one step at a time while scanning the input image.

However, this is not mandatory. A filter can move multiple steps in the horizontal and vertical

directions during scanning and the number of steps moved is called stride. The images below

show the convolutional operation with a stride of two.

*

filter 1

filter 2

filter 3

filter 4

 activation

fro
m

 filter 4

convLayer = keras.layers.Conv2D(4, kernel_size=(3, 3), activation=’relu’)

MLforPSE.com|16

Figure 2.7: Convolution with stride of 2 and zero padding5

Padding

In the previous illustration, we used zero padding to handle boundary pixels such that with

stride of 1, the width and height of the feature maps remain the same as those of the input

feature maps. This is also called the ‘SAME’ padding configuration. An alternative is ‘VALID’

configuration wherein no padding is done and therefore resulting in a smaller output feature

map. An illustration is shown below.

5 Images (Copyright © Vincent Dumoulin, Francesco Visin) obtained from
https://commons.wikimedia.org/wiki/File:Convolution_arithmetic_-_Padding_strides.gif shared under MIT license
(https://opensource.org/license/mit)

Input feature

map

Output feature

map

Filter

https://commons.wikimedia.org/wiki/File:Convolution_arithmetic_-_Padding_strides.gif

MLforPSE.com|17

Figure 2.8: Convolution with stride of 1 and no padding6

Pooling layer

While a convolutional layer extracts features from incoming feature maps, a pooling layer

shrinks the size of the feature maps. It is typical to put a pooling layer after a convolutional

layer. Just like convolution, the pooling operation works on a small region of a feature map at

a time. However, there are no trainable parameters in a pooling layer. All that happens is that

the average or maximum (more commonly used) value from the local region is extracted as

illustrated below for max pooling

6 Images (Copyright © Vincent Dumoulin, Francesco Visin) obtained from
https://commons.wikimedia.org/wiki/File:Convolution_arithmetic_-_No_padding_strides.gif shared under MIT license
(https://opensource.org/license/mit)

Input feature

map

Output feature

map

maxPoolingLayer = keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2, padding="valid")

1 0

3 2

3 5

0 1

2 4

1 2

2 5

3 1

3

4

5

5

max pooling (window size: 2X2)

with stride 2

MLforPSE.com|18

The pooling operation takes place on each incoming channel independently and therefore,

the number of output channels equals the number of input channels.

Figure 2.9: Pooling operation on multi-channel input

 Global pooling

If desired, an incoming feature map can be shrunk down to a single value via

global pooling. Keras provides classes GlobalMaxPooling2D and

GlobalAveragePooling2D for this.

We alluded to before that the classification output is generated via fully connected layers.

However, how do we convert the 3D feature maps to the neurons in a fully connected layer?

This is where the flattening operation is used, wherein the feature maps are unfolded as

shown below

pooling

stride 2

Global pooling

P
o

o
lin

g
o

u
tp

u
ts

MLforPSE.com|19

2.2 A Simple CNN for Handwritten Digit Recognition

In the previous section, we saw how easy it is to define a convolutional or pooling layer using

Keras. It is equally easy to stack together several of these layers to create a CNN and train

the network. In this section, we will create a simple CNN to classify images of handwritten

digits (0 to 9) of the kind shown below

This is a popular dataset (called MNIST dataset) in the CV world and is conveniently bundled

within Keras. Each image is a grayscale image of size 28 X 28 pixels. Let’s load the dataset

in our workspace and pre-process the images to prepare them for model training.

import packages
import numpy as np, matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras

channel 1

channel 2 flatten

3

5

11

13

12

8

6

1

⋯

fully connected layer

⋮

MLforPSE.com|20

load data
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() # 70000 images in dataset
print('training input data shape: ', x_train.shape), print('test input data shape: ', x_test.shape)
print('training output data shape: ', y_train.shape), print('test output data shape: ', y_test.shape)

>>> training input data shape: (60000, 28, 28)

test input data shape: (10000, 28, 28)
training output data shape: (60000,)
test output data shape: (10000,)

reshape each image's 2D data into a 3D shape with 1 channel (i.e., of shape 28 X 28 X 1)
x_train = x_train.reshape((x_train.shape[0], 28, 28, 1))
x_test = x_test.reshape((x_test.shape[0], 28, 28, 1))

scale pixel values to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255

With the training and test dataset prepared, we are ready to create our CNN model. We will

implement the LeNet architecture as shown below.

define CNN
lenet5 = keras.Sequential([
 keras.layers.Conv2D(6, (5,5), padding='same', input_shape=[28, 28, 1], activation='tanh'),
 keras.layers.AveragePooling2D((2,2)),

 keras.layers.Conv2D(16, (5,5), padding='valid', activation='tanh'),
 keras.layers.AveragePooling2D((2,2)),

 keras.layers.Conv2D(120, (5,5), padding='valid', activation='tanh'),
 keras.layers.Flatten(),
 keras.layers.Dense(84, activation='tanh'),
 keras.layers.Dense(10, activation='softmax') # original LeNet model had used RBF activation
])
lenet5.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
lenet5.summary()

Convo

lution
pool

ing

Convo

lution
pool

ing

Convo

lution

Fully

con

nect

ed

Fully

con

nect

ed

O
u

tp
u

t

MLforPSE.com|21

The above few lines of code is all that it takes to create a CNN. We assume that you have
worked with ANNs in the previous books of the series and therefore, we assume your

familiarity with the terms like optimizer, loss, etc. Model summary shows the number of model

parameters in each layer of the network. Let’s do a quick calculation to see how we ended up
with 156 parameters in the first convolutional layer: we have 6 filters each of size 5 X 5 ⇒
each filter has 25 weights and 1 bias ⇒ 26 parameters; therefore, all the filters in total have

26 x 6 =156 parameters. Let’s train our model.

fit model
history = lenet5.fit(x_train, y_train, batch_size=128, epochs=15, validation_split=0.1)

⋮

Our model seems to be doing a good job at classifying the validation images. Let’s make
predictions for the test images.

evaluate model
lenet5.evaluate(x_test, y_test)

fig, ax = plt.subplots(1, 10, figsize=(10,2))
for i in range(10): # first 10 test images
 img = x_test[i]

MLforPSE.com|22

 softmax_probabilities = lenet5.predict(np.expand_dims(img, 0)) # batch dimension added first
 label_pred = np.argmax(softmax_probabilities)

 ax[i].imshow(img)
 ax[i].set_title(f'Pred: {label_pred}'), ax[i].axis('off')
plt.show()

Congratulations on your first successful convolutional neural network! Of course, production-
ready CNNs with more complex input images have several more bells and whistles, but the
above steps are very typical of what goes behind creating modern CNNs.

2.3 Evolution of CNNs

LeNet was one of the first successful application of CNN for image classification. Several

variants of LeNet’s architecture have since been developed by CV community; these variants

include, amongst others, AlexNet, VGGNet, ResNet, Inception, GoogLeNet, and MobileNet.

Among these, AlexNet was the first deep CNN that drew everyone’s attention by winning the

2012 ILSVRC (ImageNet Large Scale Visual Recognition Challenge) competition. The input

images were large (227 X 227 pixels) and there were 1000 output classes. Its architecture is

shown below.

Figure 2.10: The AlexNet architecture7

7 Adapted from original image shared in Han et. al (Pre-Trained AlexNet Architecture with Pyramid Pooling and
Supervision for High Spatial Resolution Remote Sensing Image Scene Classification, Remote Sensing, 2017), under
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

O
u

tp
u

ts

MLforPSE.com|23

AlexNet uses 60 million parameters! It is computationally challenging to train; however, the

authors of AlexNet brought together several deep learning innovations (such as dropout

regularization, data augmentation, ReLU activation function, and GPU usage) to ensure

efficient model training. AlexNet was followed by another pioneer CNN architecture called

VGGNet that won the ILSVRC competition in 2014. Its architecture is shown below: it had 16

layers and around 138 million parameters!

Figure 2.11: The VGG-16 network architecture8

AlexNet and VGG inspired pursuit of deeper networks. However, very deep networks brought

the model training convergence issues to the fore. The winner of the 2015 ILSVRC

competition, the ResNet9, introduced an ingenious trick10 to enable efficient training of very

deep networks employing hundreds to thousands of layers. Consequently, ResNet is one of

the most popular CNN architectures.

The networks that we discussed in this section are classification

networks. Networks used for object detection and image segmentation

have witnessed remarkable architectural innovations in recent times.

Some popular architectures in these categories include YOLO,

RetinaNet, Mask R-CNN, U-Net, etc.

8 Adapted from original image shared in De et. al (Monolithic-3D Inference Engine with IGZO Based Ferroelectric Thin
Film Transistor Synapses, TechRxiv, 2022), under Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/)
9 https://arxiv.org/pdf/1512.03385.pdf
10 The trick was usage of ‘skip connections’ wherein the output of a layer bypasses one or more layers and is fed as input
to another layer

In
p

u
t

im
ag

e

MLforPSE.com|24

Summary

This chapter covered the basics of convolutional neural networks and introduced you to the

different component layers of a CNN. You became familiar with how to define a CNN and

trained a simple CNN to classify handwritten digits. It was assumed that you trained the CNN

on your PC. However, for more complex tasks and bigger CNN models, your PC may not be

able to handle the CNN training workload. Therefore, the next chapter will introduce you to a

popular (and free) online resource for CNN model development.

25

Chapter 3
CNN Training Environment

eep learning models are computationally intensive; training very deep computer vision

models on a large dataset can take several days (even with GPUs). It is very likely

that training such models on your personal computer is infeasible. How do you practice

and experiment with deep learning-based CV then? To our fortune, some online platforms

such as Google Colab and Kaggle exist that provide free compute resources! You can create

Python notebooks and execute them on these platforms. Expectedly, there are certain

limitations, but the free resources usually suffice for learning purposes.

If you have not used Google Colab before, then this chapter will help you get familiar with the

platform. If you are already familiar, then you may move to Chapter 4. We will cover the

following topics related to Google Colab

• Creating and executing notebooks

• Accessing GPU resources

• Saving notebooks and trained models

D

MLforPSE.com|26

3.1 Introduction to Google Colab

Google Colab is an online Jupyter notebook environment that provide free access to RAM

and GPU resources for education purposes. To access Colab, enter the URL

https://colab.research.google.com in your browser; you should see the interface shown in

Figure 3.1.

Figure 3.1: Google Colab Jupyter Notebook interface

Let’s try to train our MNIST digit classification model here. You may copy-paste the code from

Chapter 2 in a new notebook (from File menu → New notebook) or open the Jupyter notebook

mnist_CNN_classification.ipynb from Chapter 2 in Colab (from File menu → Open notebook

→ Upload). We follow the later approach here.

allows you

to ‘mount’

your Google

drive and

access your

Google Drive

contents

connected

to a hosted

runtime with

CPU

(default)

resources

MLforPSE.com|27

Figure 3.2: The notebook file from Chapter 2 in Colab

Before you execute the cells, you may want to change the hardware accelerator setting via

the Edit menu as shown below

Figure 3.3: GPU setting selection in Colab

MLforPSE.com|28

You may now click on the ‘Connect’ button (on the top-right corner) and run each cell one at

a time or run the whole notebook via Runtime menu → Run all. You should see the same

results as those seen in Chapter 2.

Figure 3.4: MNIST digit classification model training in Colab using GPU

Saving notebook and model

You can save your notebook as a .ipynb file in Google Drive or GitHub via the File menu.

Once you have trained your model, you will want to save it to be able to use it for predictions

later on. The following code will save your model in your Google Drive.

MLforPSE.com|29

Once you have the model in your Google Drive, you can download it to your PC and do image

evaluations on your PC. Your model is already trained and therefore, Colab’s compute

resources are no longer required. Note that before you are able to save your model to Google

Drive, you must ‘mount your drive’ using the button shown in Figure 3.1. To load the saved

model in your script, you can use the load_model function.

Summary

This chapter provided a quick familiarization with the Google Colab platform. We learnt how

to access free GPU resources and execute Notebook files on Colab. In the following chapters,

we will utilize the Colab platform to develop automated visual product inspection and

equipment acoustic monitoring solutions.

30

Chapter 4
Automated Product Quality Inspection via

Computer Vision

he field of computer vision has witnessed a flurry of research and innovations in the last

decade. Nonetheless, the subfield of image classification is more or less a mature field.

Object detection and image segmentation models use the image classification models

as their backbone. Therefore, in this chapter, we will focus on image classification and make

ourselves familiar with the concept of transfer learning. Specifically, we will look at a steel-

strip image dataset with the objective to classify product images into different faulty classes.

While building a computer vision solution, you may encounter several challenges: your

dataset may be too large to fit in your PC’s memory or you may not have enough images to

overcome model overfitting. Several solutions with varying degrees of complexity have been

devised for these commonly encountered obstacles. We will touch upon some of these

solutions.

Computer vision is one of the marvels of modern computer science and is, inarguably, a

complex task. However, the ML community has come together and provided several useful

resources to make computer vision more accessible: these include open-source datasets,

open-source pre-trained state-of-the-art models, user-friendly modeling frameworks, etc. This

implies that a model that has been trained by somebody else using large computational

resources on millions of images can be used by you with some tweaks to solve your specific

problem (and that too on your laptop potentially). Sounds interesting, doesn’t it? Let’s jump

right into it and cover the following topics

• Creating a CNN model from scratch for steel product defect classification

• Introduction to transfer learning and fine-tuning CNN models

• Steel product defect classification via transfer learning

T

MLforPSE.com|31

4.1 NEU Steel Defect Dataset

To demonstrate how to build a CNN network for quality inspection, we will use the NEU

(Northeastern University) surface defect dataset11. The dataset consists of images of steep

strip surfaces exhibiting six types of defects (Figure 4.1). A total of 1800 images (200 X 200

pixels) are provided (300 images belonging to each class of defect).

Figure 4.1: Defect classes in NEU surface defect dataset

Steel strip is among the main products of iron and steel industry and the quality (strength,

resistance to corrosion, etc.) of the steel strip is negatively impacted by the presence of the

aforementioned defects. Therefore, it is desired to have an inspection system that can

promptly detect the presence of a defective steep strip and notify the plant personnel.

11 Available at http://faculty.neu.edu.cn/songkechen/zh_cn/zhym/263269/list/index.htm

Crazing

Inclusion

Patches

Pitted surface

Rolled-in scale

Scratches

MLforPSE.com|32

4.2 Steel Defect Classification Modeling from

Scratch

To train a CNN-based steel strip defect classification model, we will utilize Google Colab. The

complete notebook is provided on GitHub as NEU-classification-fromScratch.ipynb. The 1800

images have been divided into a training dataset (1728 images) and a test dataset (72 images;

12 images from each class). Also, as is usually done for CV classification tasks, the images

have been segregated into separate folders corresponding to the six defects. The folder

hierarchy12 looks as follows

The dataset is uploaded to Google Drive as a zipped file and then unzipped in Colab using

the following code. Before running the code below, make sure that your Google Drive has

been mounted (mounting procedure was illustrated in Chapter 3).

unzip
!unzip -q -o './drive/MyDrive/NEU-data-TrainTest.zip' -d './'

Upon executing the above command in a Colab cell, you should see your images as follows

Let’s now import some packages and ‘load’ the images.

12 NEU surface defect dataset is also available on Kaggle (https://www.kaggle.com/datasets/fantacher/neu-metal-
surface-defects-data/data) in the segregated form. If using this dataset, then place the validation images in the training
dataset to be consistent with the illustration in this chapter.

fr
o

m
 o

ri
gi

n
al

 s
o

u
rc

e

im
ag

es
 s

eg
re

ga
te

d

MLforPSE.com|33

import required packages
import matplotlib.pyplot as plt, numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import layers, models

You are probably not familiar with the ImageDataGenerator class. This class allows just-in-

time loading of images and avoids loading all the images into memory at once. In Chapter 2,
while building MNIST classification model, we had loaded data from all the images in our
workspace. However, this may not be practical when you are dealing with millions of images.
Several techniques have been devised by the CV community to handle large datasets; the

ImageDataGenerator class is a very convenient option13 for just-in-time loading (also termed

lazy loading) of images. This class also supports several just-in-time image pre-processing
such as scaling, resizing, data augmentation, etc.

13 Other popular options for creating image input pipelines include tf.keras.utils.image_dataset_from_directory and
tf.data.Dataset

create iterators to progressively load images later in the code
train_datagen = ImageDataGenerator(rescale = 1/255.0, validation_split = 0.2)
test_datagen = ImageDataGenerator(rescale = 1/255.0)

fit_iterator = train_datagen.flow_from_directory(
 directory = './NEU-data-TrainTest/train',
 target_size = (200, 200),
 batch_size = 16,
 class_mode = 'categorical',
 subset='training')

valid_iterator = train_datagen.flow_from_directory(
 directory = './NEU-data-TrainTest/train',
 target_size = (200, 200),
 batch_size = 16,
 class_mode = 'categorical',
 subset='validation')

test_iterator = test_datagen.flow_from_directory(
 directory = './NEU-data-TrainTest/test',
 target_size = (200, 200),
 batch_size = 16,
 class_mode = 'categorical', shuffle= False)

>>> Found 1386 images belonging to 6 classes.

Found 342 images belonging to 6 classes.

Found 72 images belonging to 6 classes.

images will be scaled when

loaded

automatically detects

folders belonging to

different classes

16 randomly chosen images

are fetched at a time

MLforPSE.com|34

check class names
class_names = fit_iterator.class_indices
class_names = list(class_names.keys())
print(class_names)

>>> ['Crazing', 'Inclusion', 'Patches', 'Pitted', 'Rolled', 'Scratches']

The code below shows how fit_iterator can be used to load images from the fitting dataset14.

let's load a few images from the fitting dataset via the iterator
images, labels = fit_iterator.next() # label for each image is in one-hot encoded form

fig, axes = plt.subplots(nrows=4, ncols=4)
for i in range(16):
 image, label = images[i], labels[i]
 label_name = class_names[np.argmax(label)]
 row, col = i//4, i%4
 axes[row][col].imshow(image)
 axes[row][col].set_title(label_name)
 axes[row][col].axis('off')
plt.show()

In the above code, the next method of the iterator returns a tuple of two numpy arrays: an
array of pixel values and an array of (one-hot encoded) labels. Execution of the above code
results in the following

14 Note that tf.keras.preprocessing.image.ImageDataGenerator has been deprecated. However, it is easy to understand
for a beginner and therefore used in this case-study to illustrate the concept of lazy loading of images.

MLforPSE.com|35

Let’s now define our CNN model and train it.

define the CNN model
num_classes = len(class_names)

model = tf.keras.models.Sequential([
 tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(200, 200, 3)),
 tf.keras.layers.MaxPooling2D(2, 2),
 tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
 tf.keras.layers.MaxPooling2D(2,2),
 tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
 tf.keras.layers.MaxPooling2D(2,2),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(256, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(num_classes, activation='softmax')
])

model.summary()

MLforPSE.com|36

compile and fit
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(fit_iterator, epochs = 30, verbose= 1, validation_data = valid_iterator)

⋮

You can notice that the fit_iterator and the valid_iterator were passed along to the network

fitting function wherein they are used to fetch just enough images as needed for an iteration.

plot validation curve
plt.figure()
plt.plot(history.history['accuracy'], label='Fitting Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.xlabel('Epoch'), plt.ylabel('Accuracy'), plt.legend()

Let’s check the model’s performance on the test images.

MLforPSE.com|37

check performance on test dataset
result = model.evaluate(test_iterator)
print("Test loss, Test accuracy : ", result)

>>> Test loss, Test accuracy : [0.249, 0.958]

plot confusion matrix for test dataset
from sklearn.metrics import confusion_matrix
import seaborn as sns

probs_preds = model.predict(test_iterator) # each image is assigned 6 probabilities
 corresponding to the 6 fault classes
labels_preds = probs_preds.argmax(axis=1) # numeric label for each image
conf_matrix = confusion_matrix(test_iterator.classes, labels_preds)

fig, ax = plt.subplots()
sns.heatmap(conf_matrix, fmt='g', annot=True)
ax.set_xlabel('Predicted labels'), ax.set_ylabel('True labels'), ax.set_title('Confusion Matrix')
ax.set_xticklabels(class_names), ax.set_yticklabels(class_names, rotation=45)

It wasn’t very difficult to obtain an industrial-scale CV model, was it? Note that we did not

attempt to optimize the network hyperparameters (such as the number of layers, number of

filters in each convolutional layer, number of neurons in the fully connected layers, etc.). You

would undertake an exhaustive hyperparameter optimization exercise to obtain a production-

ready model.

MLforPSE.com|38

4.3 Steel Defect Classification via Transfer Learning

You will often not need to define and train a CNN network from scratch. Many state-of-the-

art pre-trained CV models are made available by Keras and can be loaded with just a single

line of code as follows:

pretrained_model = tf.keras.applications.VGG16(weights='imagenet')

The above line instantiates a VGG16 model and downloads weights trained on ImageNet

dataset. One issue with the above code is that the pre-trained model will classify your image

to one of the 1000 object classes from the ImageNet dataset. However, your image dataset

may be very different from the ImageNet dataset. Therefore, what you would want is to take

the feature extraction part of the pre-trained model and add your own classification part to it

to customize it to your specific purpose. Moreover, when you train this customized model, you

would not want to change the weights of the pre-trained model; this is accomplished by

‘freezing’ the pre-trained model’s layers as shown below8.

In
p

u
t

im
ag

e

Frozen

Replace & train

pretrained_model = tf.keras.applications.VGG16(include_top=False, weights='imagenet')

pretrained_model.trainable = False

freezes the pre-trained layers

removes the classification head of

the original VGG16 model

MLforPSE.com|39

Let’s again work on our NEU dataset and see how we can attach a custom classification head

to a pre-trained model. Hopefully, this transfer learning exercise gives us a more accurate

model than the one we got previously. The code for analyzing NEU dataset with transfer

learning is provided in the file NEU-classification-transferLearning.ipynb. The code for data

ingest pipeline remains the same. The network creation part is different as shown below. Note

that we use a MobileNet model, a popular and computationally not very expensive model, as

our base pre-trained model.

define the CNN model via transfer learning
num_classes = len(class_names)
base_model = tf.keras.applications.MobileNetV2(input_shape=(200, 200, 3), include_top=False,

 weights='imagenet')
base_model.trainable = False

add a trainable customized classification head to the pre-trained base model
model = models.Sequential([
 base_model,
 layers.GlobalAveragePooling2D(),
 layers.Dense(256, activation='relu'),
 layers.Dropout(0.5),
 layers.Dense(num_classes, activation='softmax')
])

model.summary()

compile and fit
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(fit_iterator, epochs = 9, verbose= 1, validation_data = valid_iterator)

MLforPSE.com|40

Did you notice that with transfer learning we reach pretty high fitting and validation accuracies

in just a couple of epochs? Let’s check the model’s performance on the test images.

check performance on test dataset
result = model.evaluate(test_iterator)
print("Test loss, Test accuracy : ", result)

>>> Test loss, Test accuracy : [0.024, 0.986]

visualize predictions
images, labels = test_iterator.next()

fig = plt.figure()
for index, image in enumerate(images):
 ax = fig.add_subplot(4, 4, index+1)
 plt.imshow(image)

MLforPSE.com|41

 image = np.expand_dims(image, 0) # adding a batch dimension
 probs_pred = model.predict(image) # softmax probabilities for the 6 fault classes
 probs_pred = np.squeeze(probs_pred) # removing the batch dimension

 label_actual = np.argmax(labels[index])
 label_pred = np.argmax(probs_pred)

 if label_pred == label_actual:
 color='blue'
 else:
 color='red'

 ax.set_title(f'Actual: {class_names[label_actual]} \n Pred: {class_names[label_pred]}', color=color)
 ax.axis('off')

Hopefully, you can appreciate the ease with which you can use state-of-the-art pre-trained
models using modern frameworks like Keras.

MLforPSE.com|42

Summary

This chapter provided a whirlwind tour of building CNN-based CV models. Two approaches

were covered: building CNN models from scratch and via transfer learning. In this chapter, we

also covered the concept of lazy loading of images and the importance of properly designing

the image ingest pipeline. An easy-to-understand approach using ImageDataGenerator was

illustrated and more modern approaches were referenced. This chapter should give you a

very good idea of what goes behind creating modern CV models. There are many CV-related

concepts (such as data augmentation, creating production-level modeling pipelines on cloud,

etc.) that we did not touch upon (or covered in detail) in this short book. Nonetheless, you

should now have the basic foundations to approach the advanced CV topics with confidence.

Fine-tuning

You may still be marveling at how a model trained using ImageNet dataset

(https://www.image-net.org/about.php) be used successfully on a completely unrelated

NEU steel strip dataset. Well, that’s the beauty of computer vision. Any object in an image

is a sum-total of some low-level features; the feature extraction base of the pre-trained

models ‘knows’ how to extract the low-level features and your custom classification head

then does the rest of the job.

Nonetheless, you may encounter situations where transfer learning does not yield

satisfactory performance and therefore the feature extraction layers need to be

customized as well for your specific problem. A common recourse in such cases is to fine-

tune your trained model after transfer learning. To accomplish this, you can unfreeze the

base layers and train you model for a few more epochs. The choice of learning rate

becomes crucial as too high a learning rate may ‘ruin’ the pre-trained weights of the

convolutional base and too low a learning rate can make the training convergence very

slow. A customary practice is to adjust the learning rate with epochs as shown below

epochs epochs

le
ar

n
in

g
ra

te

le
ar

n
in

g
ra

te

exponential

decay

exponential

decay

43

Chapter 5
Automated Equipment Monitoring Using Sound

perating plant equipment at their mechanical limits with high reliability is the new craze

among plant managers in the Industry 4.0 era. Proactive, automated, and smart

monitoring of equipment is key to achieving the aforementioned objectives. Sound-

based anomaly detection is one of the techniques used to detect equipment abnormalities at

early stages of failures. The rationale is simple: If a machine starts making abnormal sound,

then most likely it is malfunctioning. Acoustic monitoring is also attractive due to the ease of

installation of the microphone sensors to capture sound. Correspondingly, implementations

of audio-based predictive maintenance solutions are on the rise in process industry.

Despite its apparent advantages, audio-based anomaly detection is not among the top

equipment condition monitoring techniques. Lack of adequate data from past malfunctions

hinders development of supervised fault detection (and classification) solutions. One may

build fault detection solutions using sound data taken from only normally functioning

machines; however, preventing false alerts due to background noise remains a big challenge.

Nonetheless, smart algorithms are being devised to handle background noise appropriately

and therefore, acoustics-based equipment monitoring is poised to gain more prominence.

Traditionally, abnormal sound detection has been performed through explicit feature

engineering using the sound signal in its time-waveform, frequency, and time-frequency

representations. Now-a-days, deep learning is frequently employed to automatically extract

relevant features. In this chapter we will look at both of these techniques. Specifically, the

following topics are covered

• Introduction to air compressor sound dataset

• Abnormal sound detection using classical machine learning

• Abnormal sound detection using deep learning

O

MLforPSE.com|44

5.1 Air Compressor Sound Dataset

The acoustic dataset (https://www.iitk.ac.in/idea/datasets) that we will work with in this chapter

was collected on a reciprocating type air compressor. The dataset contains 225 audio files

(each 3 seconds long) for each of the eight conditions of the compressor.

Figure 5.1: Classes of audio files in the air compressor sound dataset [use the notebook file

soundDataExplore.ipynb to play the sound for each of the machine state]

Condition Sample audio file

Healthy

Leakage inlet valve fault

(LIV)

Leakage outlet valve fault

(LOV)

Non-Return valve fault

(NRV)

Flywheel fault

Rider belt fault

Piston ring fault

Bearing fault

MLforPSE.com|45

The authors of the dataset also provide the features extracted from the audio files in a

separate dataset15. Features are extracted in the frequency and time-frequency domains. We

will use this feature dataset to build an SVM-based fault classification model.

Converting sound signal into images

We saw in Chapter 1 that a sound signal is simply a vibration signal, and we know that a

spectrogram (introduced in Book 3 of the series) is a very useful time-frequency

representation of a vibration signal. A spectrogram provides a 2D visual representation of the

sound signal and we have seen that CNNs excel at analyzing such visual inputs. Therefore,

computer vision techniques can be employed for abnormal sound detection as well!

For audio signal analysis, instead of spectrogram, log-mel spectrogram is commonly

employed. A log-mel spectrogram is a type of spectrogram where the frequency axis is not

linear but based on mel scale16. The mel scale provides better resolution for lower frequencies

and therefore mirrors the sensitivity of human ears (humans can differentiate between 500 Hz

and 600 Hz better than differentiating between 10,000 Hz and 10100 Hz!). A log-mel

spectrogram can be easily obtained using the Librosa library.

15 Download the ‘Air Compressor Health State Dataset Features’ dataset
16 https://en.wikipedia.org/wiki/Mel_scale

Log-mel spectrogram

MLforPSE.com|46

In the acoustic analysis world, another 2D visual representation that is commonly employed

is called MFCCs (mel frequency cepstral coefficients) which is a compressed version of a log-

mel spectrogram.

5.2 Abnormal Equipment Sound Classification

using Support Vector Machines

To illustrate how abnormal sound detection and classification can be performed using

classical machine learning techniques, we will use the feature dataset to train a support vector

machine classifier as shown below.

import required packages
import numpy as np, pandas as pd, matplotlib.pyplot as plt, seaborn as sn
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

Log-mel spectrogram

MLforPSE.com|47

from sklearn.model_selection import GridSearchCV
from sklearn.metrics import confusion_matrix

read data [the provided csv file contains 1800 rows: each row contains features extracted from
 # data from an audio file and the associated label (in the last column)]
dataRaw = pd.read_csv('WPTFeatures254_FaultStates.csv', delimiter=',')
print(dataRaw.shape)

>>> (1800, 255)

separate features and label
input_data = dataRaw.iloc[:,:-1].values
output_label_text = dataRaw.iloc[:,-1]

convert text labels to numeric labels
le = LabelEncoder().fit(output_label_text)
output_labels = le.transform(output_label_text)
print(le.classes_)

>> ['Bearing' 'Flywheel' 'Healthy' 'LIV' 'LOV' 'NRV' 'Piston' 'Riderbelt']

check number of samples for each class
unique_labels, counts = np.unique(output_labels, return_counts=True)

plt.figure(), plt.bar(unique_labels, counts)
plt.xlabel('Class'), plt.ylabel('Number of samples')
plt.xticks(range(len(unique_labels)), labels=le.classes_, rotation=45)

separate training and test data and scale
X_train, X_test, y_train, y_test = train_test_split(input_data, output_labels, test_size=0.2,
 stratify=output_labels, random_state=100)

MLforPSE.com|48

scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

fit model with grid search-based hyperparameter determination
param_grid = {'C':[0.01, 0.05, 0.1, 1, 10]}
gs = GridSearchCV(LinearSVC(dual='auto'), param_grid, cv=3).fit(X_train_scaled, y_train)
print('Optimal hyperparameter:', gs.best_params_)

>>> Optimal hyperparameter: {'C': 0.05}

predict for test data and plot confusion matrix
y_test_pred = gs.predict(X_test_scaled)
conf_mat = confusion_matrix(y_test, y_test_pred)

plt.figure()
sn.heatmap(conf_mat, annot=True, cmap='Blues', xticklabels=le.classes_, yticklabels=le.classes_)
plt.ylabel('True Fault Class', color='maroon')
plt.xlabel('Predicted Fault Class', color='green')

MLforPSE.com|49

5.3 Abnormal Equipment Sound Classification

using CNN

The perfect accuracy of the SVM classifier suggests that the time-frequency features contain

enough information to enable differentiation between the audio data associated with different

machine health states. Let’s see if we can employ a CNN to extract these features directly

from the log-mel spectrogram and MFCCs ‘images’. The input feature map for each audio file

is created by concatenating the log-mel spectrogram and MFCC matrices as shown below

We will again work17 in Google Colab and like we did in Chapter 4, we will upload air

compressor data on Google Drive. Complete code is provided in the notebook

AirCompressorSound-classification.ipynb. Let’s begin by unzipping the Google Drive file in

Colab and importing some packages.

17 The CNN-based ASD approach presented in this chapter is adapted from the approach provided at
https://github.com/SAP-samples/btp-ai-sustainability-bootcamp/blob/main/src/ai-models/predictive-
maintenance/notebooks/sound_based_predictive_maintenance.ipynb which is shared under Apache License 2.0.

Log-mel spectrogram MFCCs

(64 X 98)

(40 X 98)

https://github.com/SAP-samples/btp-ai-sustainability-bootcamp/blob/main/src/ai-models/predictive-maintenance/notebooks/sound_based_predictive_maintenance.ipynb
https://github.com/SAP-samples/btp-ai-sustainability-bootcamp/blob/main/src/ai-models/predictive-maintenance/notebooks/sound_based_predictive_maintenance.ipynb
https://github.com/SAP-samples/btp-ai-sustainability-bootcamp/blob/main/LICENSE

MLforPSE.com|50

unzip
!unzip -q -o './drive/MyDrive/AirCompressor_Data.zip' -d './'

import packages
import numpy as np, pandas as pd, matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from tensorflow.keras import models, layers
import tensorflow as tf
import librosa
from glob import glob
import seaborn as sns

Now we will prepare data for training and test. Each audio file needs to be converted into its

combined spectrogram and MFCC matrix. Let's first assign the health label to each audio file.

get file paths and assign corresponding class labels
clips = glob('./AirCompressor_Data/*/*') # fetches all the file names
clips_df = pd.DataFrame(data={'path':clips, 'label':[c.split('/')[-2] for c in clips]})

class_dict=dict(enumerate(clips_df.label.unique()))
classes = {v: k for k, v in class_dict.items()}
clips_df['class']=clips_df['label'].apply(lambda x : classes[x]) # each file is assigned a sparse label
clips_df

Next, we define a utility function that takes an audio clip and returns its combined acoustic

features: log-mel spectrogram and MFCCs.

MLforPSE.com|51

sr=50000/3
def acoustic_feature_computation(clip):
 data = np.loadtxt(clip, delimiter=',')
 mel_spectrogram = librosa.feature.melspectrogram(y=data, sr=sr, hop_length=512,
 n_mels=64, fmax=sr/2)
 log_mel_spectrogram = librosa.power_to_db(mel_spectrogram)
 MFCCs = librosa.feature.mfcc(y=data, sr=sr, n_mfcc=40, fmax=sr/2)
 acoustic_features = np.concatenate((MFCCs,log_mel_spectrogram), axis =0)
 return acoustic_features

We can now create our fitting, validation, and test datasets.

train, test = train_test_split(clips_df, test_size=0.10, random_state=25)
train, validation = train_test_split(train, test_size=0.15, random_state=25)

apply the function acoustic_feature_computation to each audio file
X_train, X_validation, X_test = [], [], []
y_train, y_validation, y_test = [], [], []

for i,r in train.iterrows(): # Iterate over the DataFrame rows
 X_train.append(acoustic_feature_computation(r['path']))
 y_train.append(r['class'])

for i,r in test.iterrows():
 X_test.append(acoustic_feature_computation(r['path']))
 y_test.append(r['class'])

for i,r in validation.iterrows():
 X_validation.append(acoustic_feature_computation(r['path']))
 y_validation.append(r['class'])

With the datasets prepared, we can build the CNN model now.

initializer = tf.keras.initializers.GlorotUniform()
CNNmodel = models.Sequential()

feature extraction part
CNNmodel.add(layers.Conv2D(32, (4, 4),(2,2), activation='relu', input_shape=(104,98,1),
kernel_initializer=initializer))
CNNmodel.add(layers.BatchNormalization())
CNNmodel.add(layers.Conv2D(32, (4, 4),(2,2), activation='relu', kernel_initializer=initializer))
CNNmodel.add(layers.BatchNormalization())
CNNmodel.add(layers.MaxPooling2D((2, 2)))

MLforPSE.com|52

classification head
CNNmodel.add(layers.Flatten())
CNNmodel.add(layers.Dense(512, activation='relu',kernel_initializer=initializer))
CNNmodel.add(layers.Dropout(0.5))
CNNmodel.add(layers.Dense(64, activation='relu',kernel_initializer=initializer))
CNNmodel.add(layers.Dropout(0.5))

Output
CNNmodel.add(layers.Dense(8, activation='softmax'))

CNNmodel.summary()

compile and fit
CNNmodel.compile(optimizer= "adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(),
 metrics = ['accuracy'])
history = CNNmodel.fit(x=np.array(X_train, np.float32), y=np.array(y_train, np.float32),
 validation_data = (np.array(X_validation, np.float32),
 np.array(y_validation, np.float32)),
 epochs=100)

MLforPSE.com|53

⋮

plot validation curve
plt.figure()
plt.plot(history.history['accuracy'], label='Fitting Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.xlabel('Epoch'), plt.ylabel('Accuracy'), plt.legend()

Our CNN model seems to be a perfect classifier with 100% accuracy on validation dataset.

Let’s check its performance for test dataset.

score = CNNmodel.evaluate(np.array(X_test, np.float32), np.array(y_test, np.float32))
print('Test accuracy:', score[1])

>>> Test accuracy: 1.0

MLforPSE.com|54

plot confusion matrix for test dataset
from sklearn.metrics import confusion_matrix

probs_preds = CNNmodel.predict(np.array(X_test, np.float32)) # each audio file is assigned 8
 probabilities corresponding to the 8 health states
pred_class = probs_preds.argmax(axis=1) # numeric class for each audio file
cf_matrix = confusion_matrix(y_test, pred_class)

ax = sns.heatmap(cf_matrix, annot=True, cmap='Blues')
ax.set_xlabel('\nPredicted Sound Category'), ax.set_ylabel('Actual Sound Category ')
ax.set_xticklabels(class_dict.values(), rotation=30), ax.set_yticklabels(class_dict.values(), rotation=30)

With this, we have come to the end of our quick foray into the world of CNN-based deep

learning and its usage for building process monitoring solutions using visual and audio data.

We saw how easy it is to build powerful modern equipment monitoring solutions using CNN.

If desired, you can also build a combined audio and video-based smart process surveillance

solution using the approaches covered in this book.

Summary

In this chapter, we quickly covered a couple of approaches for abnormal equipment sound

detection. The illustrations covered the traditional approach entailing explicit feature

engineering and the CNN-based deep learning approach for monitoring reciprocating air

compressors.

MLforPSE.com|55

End of the book

Machine Learning in Python for Visual and Acoustic

Data-based Process Monitoring

Of process data science, By process data scientists, For process data scientists

This book is designed to help readers gain quick familiarity with deep learning-based

computer vision and abnormal equipment sound detection techniques. The book helps

you take your first step towards learning how to use convolutional neural networks (the

ANN architecture that is behind the modern revolution in computer vision) and build

image sensor-based manufacturing defect detection solutions. A quick introduction is

also provided to how modern predictive maintenance solutions can be built for

process-critical equipment by analyzing the sound generated by the equipment.

Overall, this short eBook sets the foundation with which budding process data

scientists can confidently navigate the world of modern computer vision and acoustic

monitoring.

The following topics are briefly covered:

• Introduction to computer vision (CV) and CNNs

• Best practices for building CV solutions for detecting manufacturing defects

• Building CNN-based CV solutions from scratch and via transfer learning

• Introduction to equipment sound monitoring

• Building equipment abnormal sound detection solutions using CNNs

www.MLforPSE.com

