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विद्या प्रशस्यते लोक ैः  विद्या सिवत्र गौरिा ।  

विद्यया लभते सिं विद्वान सिवत्र पूज्यते ।। 

Knowledge is extolled everywhere, 

 knowledge is considered great everywhere; 

One can attain everything with the help of knowledge, 

and a knowledged person is respected everywhere . 

- A popular Sanskrit shloka 
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(https://play.google.com/store/books).  We would greatly appreciate any information about any 

corrections and/or typographical errors in the book. 
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Series Introduction 
 

In the 21st century, data science has become an integral part of the work culture in the 

manufacturing industry and process industry is no exception to this modern phenomenon. From 

process monitoring to predictive maintenance, fault diagnosis to advanced process control, 

machine learning-based solutions are being used to achieve higher process reliability and 

efficiency. However, few books are available that adequately cater to the needs of budding 

process data scientists. The scant available resources include: 1) generic data science books 

that fail to account for the specific characteristics and needs of process plants 2) process domain-

specific books with rigorous and verbose treatment of underlying mathematical details that 

become too theoretical for industrial practitioners. Understandably, this leaves a lot to be desired. 

Books are sought that have process systems in the backdrop, stress application aspects, and 

provide a guided tour of ML techniques that have proven useful in process industry. This series 

‘Machine Learning for Process Industry’ addresses this gap to reduce the barrier-to-entry for 

those new to process data science. 

 

The first book of the series ‘Machine Learning in Python for Process Systems Engineering’ 

covers the basic foundations of machine learning and provides an overview of broad spectrum of 

ML methods primarily suited for static systems. Step-by-step guidance on building ML solutions 

for process monitoring, soft sensing, predictive maintenance, etc. are provided using real process 

datasets. Aspects relevant to process systems such as modeling correlated variables via 

PCA/PLS, handling outliers in noisy multidimensional datasets, controlling processes using 

reinforcement learning, etc. are covered. The second book of the series ‘Machine Learning in 

Python for Dynamic Process Systems’ focuses on dynamic systems and provides a guided 

tour along the wide range of available dynamic modeling choices. Emphasis is paid to both the 

classical methods (ARX, CVA, ARMAX, OE, etc.) and modern neural network methods. 

Applications on time series analysis, noise modeling, system identification, and process fault 

detection are illustrated with examples. The third book of the series ‘Machine Learning in 

Python for Process and Equipment Condition Monitoring, and Predictive Maintenance’ 

takes a deep dive into an important application area of ML, viz, prognostics and health 

management. ML methods that are widely employed for the different aspects of plant health 

management, namely, fault detection, fault isolation, fault diagnosis, and fault prognosis, are 

covered in detail. Emphasis is placed on conceptual understanding and practical 

implementations. This fourth book of the series is a quick foray into the world of deep learning-

based computer vision and abnormal equipment sound detection. The readers are introduced to 

the ease with which powerful equipment and product quality monitoring solutions can be built 

using sound and visual data. Future books of the series will continue to focus on other aspects 

and needs of process industry. It is hoped that these books can help process data scientists find 

innovative ML solutions to the real-world problems faced by the process industry. 
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With the growing trend in usage of machine learning in the process industry, there is growing 

demand for process domain experts/process engineers with data science/ML skills. These books 

have been written to cover the existing gap in ML resources for such process data scientists. 

Specifically, books of this series will be useful to budding process data scientists, practicing 

process engineers looking to ‘pick up’ machine learning, and data scientists looking to understand 

the needs and characteristics of process systems. With the focus on practical guidelines and 

industrial-scale case studies, we hope that these books lead to wider spread of data science in 

the process industry.  
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Preface 
 

In today’s world, it is hard to be unaware of the remarkable advances artificial intelligence has 

been making; new AI tools come up every day (such as ChatGPT, Sora, etc.) that change the 

way we interact with machines and the world around us. Thankfully, the process industry is 

not lagging behind in riding this wave of digital innovations. ‘Smart manufacturing’ and 

‘digitalization’ are the governing mantras among the industry executives. Under the broad 

umbrella of Industry 4.0, data-driven solutions are increasingly being deployed to optimize 

and monitor every step along a production line. There is a general consensus that every single 

bit of data is a resource which needs to be utilized to obtain better process insights. In this 

context, to assist young process data scientists (PDSs) get onto this ‘AI for process industry’ 

bandwagon, the previous books of the series covered how ML-based plant health 

management solutions are built using traditional process data (such as flow, temperature, 

pressure, etc.). This book provides a cursory coverage of how visual and acoustic process 

data are utilized for process monitoring. The justification for using visual and acoustic process 

data is straightforward: an experienced technician can infer a machine fault by listening to the 

sound it is making and promptly catch a product quality issue by looking at the final product. 

Tools like ChatGPT have shown that artificial neural networks can be imparted human-like 

intelligence via deep learning (DL). Correspondingly, enterprises are deploying DL-based 

computer vision (CV) and acoustic monitoring to boost the automated surveillance of 

manufacturing plants while reducing labor costs. Although (scattered) resources are available 

on internet on DL-based visual and acoustic analytics, the learning curve can be steep for a 

beginner PDS. Therefore, this book provides an introduction to how computer vision and 

acoustic monitoring solutions are built using deep learning for a manufacturing plant. 

 

Computer vision and acoustic analysis are, inarguably, specialized fields of practice; 

developing ML solutions using visual and acoustic data require careful feature engineering by 

experts. Fortunately, the rise of deep learning has made the task of PDSs easier. The same 

DL concepts that are used to estimate the RUL of failing machines (as we saw in the previous 

books of the series) can be used for building CV and abnormal sound detection (ASD) 

solutions without explicit feature engineering. However, deep learning-based CV (and ASD) 

can be scary if you are a beginner: you may find that your PC is not powerful enough to train 

the neural network; you may get overwhelmed with the different modeling paradigms (and 

different terms like LeNet, AlexNet, ResNet, etc.); you may find it strange that using pre-

trained models (via transfer learning) is the dominant approach for quickly developing CV 

solutions. Therefore, this short book is to help you take your first step and provide you with 

enough familiarity to enable you to navigate the DL-based CV and ASD world confidently.   
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The broad objectives of the book can be summarized as follows: 

• provide familiarity to deep learning-based computer vision and equipment acoustic 

monitoring  

• provide a gentle introduction to CNNs 

• provide a quick introduction to Google Colab as the environment for computationally 

intensive ANN training 

• showcase applications of computer vision for steel product fault classification 

• showcase application of acoustic monitoring for air compressor fault classification  

 

Computer vision and equipment acoustic-based process monitoring are not yet among the 

mainstream technologies employed in process industry. Therefore, a conscious decision was 

made to keep this book at the beginner level and not weigh readers down with too many 

advanced concepts which can become overwhelming. Complete code implementations have 

been provided in the GitHub repository. We are quite confident that this text will get the 

beginner PDSs excited about these technologies, and encourage them to build upon the 

concepts gained from the book and develop interesting monitoring solutions for their 

manufacturing facilities. 

 

Who should read this book 

This book is meant to give an introductory coverage of convolutional neural networks and its 

applications for computer vision and equipment acoustic monitoring. The following categories 

of readers will find the book useful: 

 

1) Process data scientists new to the field of computer vision and acoustic monitoring 

2) Practicing process data scientists looking for an introductory resource on CNNs  

3) Process engineers or process engineering students making their entries into the world 

of data science 

 

Pre-requisites 

Prior experience with machine learning, Python, and artificial neural networks is assumed.  
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Chapter 1 
Introduction to Process Monitoring via Computer 

Vision and Abnormal Sound Detection 

 
t is not easy to ensure continuous reliable plant operations with optimal efficiency and high 

product quality standards; dedicated teams of plant operators and engineers work round 

the clock to efficiently run manufacturing plants. In Industry 4.0 era, there has been an 

enhanced push to digitalize plant operations to lighten the burden of plant personnel. Most of 

the modern production facilities employ hundreds of sensors to keep a tab on plant operations 

in real-time. Furthermore, smart digital process monitoring tools are utilized to continuously 

monitor plant performance. Sensors that provide flow, temperature, pressure, level, 

composition, and vibration measurements have traditionally been employed by process 

industry. In recent times, image and sound sensors are increasingly being employed to aid 

plant health management. The justification behind this trend is simple: an expert technician 

can often immediately tell if an equipment needs maintenance by listening to the sound it is 

making or if product quality has been compromised by looking at the product. Therefore, smart 

ML solutions are being built that utilize the image and sound data, and mimic the intelligence 

of expert technicians.  

 

The emergence of deep learning has given wings to the field of computer vision (CV) which 

is field of artificial intelligence that enables computers to make inferences using visual inputs. 

Automated quality inspection is one such popular application of CV. CV techniques find usage 

in analysis of equipment sound as well and has enabled abnormal sound detection (ASD)-

based predictive maintenance solutions. Inarguably, CV and acoustic signal analysis are 

highly specialized areas;  however, deep learning enables development of CV and ASD 

solutions using raw data directly and bypassing the need for explicit feature engineering 

(which often requires subject matter expertise). Correspondingly, CV and acoustic monitoring 

have become critical components of a modern process data scientist’s toolkit.  

 

While previous books of the series have focused on plant health management using traditional 

signals, this short book provides an introduction to deep learning-based CV and ASD. The 

current chapter covers the following topics  

• Introduction to process monitoring techniques 

• CV use cases and workflow 

• ASD use cases and workflow 

 

I 
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1.1 Process Monitoring Techniques 

 

Process plants are prone to different types of failures; plants may experience pipe leaks, 

motor bearing issues, heat exchanger fouling, sensor failures, equipment surface hotspots, 

valve failures, etc. Consequently, different techniques have been devised over the years to 

monitor the ‘health’ of plant equipment using different types of sensors.  Figure 1.1 lists some 

of these commonly employed techniques in the process industry. The methods include, 

amongst others, usage of transducers to monitor machine vibrations and comparing process 

stream conditions (flow, temperature, pressure, etc.) against expected values. Within this list 

lie the practices of just ‘looking’ at and ‘listening’ to the plant equipment. In the pre-computer 

era, plant operators would go around the plant and visually inspect plant equipment and listen 

to the ‘plant sound’. Well, these practices are making a comeback with a twist that the ‘looking’ 

and ‘listening’ are done by computers. While cameras and microphones act as eyes and ears, 

the deep learning algorithms mimic the human intelligence of plant operators in inferring the 

presence of abnormalities.  

 

 
Figure 1.1: Common process/equipment condition monitoring techniques   

 

  

Vibration monitoring 

• Transducers are used to measure to-and-

fro motion of rotating machines 

• Mechanical issues lead to high vibrations 

Thermography 

monitoring 
• Infrared cameras are used to detect hot 

spots on equipment surfaces 

• Equipment failures are often preceded by 

temperature changes 

Sound monitoring 

• Microphones are used to record 

sound generated by machines 

• Failures are often preceded by 

abnormal sound pattern 

Process performance monitoring 

• Process stream conditions (flow, 

pressure, etc.) are tracked  

• Performance KPIs (e.g., efficiency) are 

computed and tracked 

Motor current analysis 

• The current draw of motors is recorded 

and analyzed 

• Failures are often preceded by abnormal 

current signatures 

Oil analysis 

• Used to track condition of lubricants 

• Metal particles in lubricants used as 

indicator of defects in gears, bearings, etc.  

Image analysis 

• Cameras are used to capture 

images of equipment and products 

• Equipment cracks, product defects 

are detected 

Alarms & operator action analysis 

• DCS alarms and operator actions 

are analyzed for process health 

analysis 

Acoustic emission analysis 

Ultrasound sensors are used to 

detect leaks in pipes, valves, etc. 

Ultrasound analysis 

• Acoustic emission sensors are used 

to catch very high frequency signals  

• Used for detection of  pipelines 

leakages, bearing defects, etc. 
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Using cameras and microphones to monitor an equipment are attractive due to the non-

intrusive nature of these sensors: equipment does not have to be taken offline for installation 

of these sensors. Figure 1.2 shows a few use-cases of computer vision in manufacturing.  

 

 
Figure 1.2: Examples of computer vision use cases in manufacturing1 

 

 

The use-cases shown in Figure 1.2 fall in the category of image 

classification. Object detection and image segmentation are two other 

popular tasks performed through computer vision. 

 

 

Like CV, acoustic monitoring has found several use-cases in process industry as well; Figure 

1.3 shows some of them. When equipment such as motors experience mechanical issues 

(misalignment, looseness, imbalance, etc.), they produce abnormal sound; these abnormal 

sound patterns act as leading indicators of impending failures. Consequently, predictive 

maintenance applications are often built using equipment acoustics.   

 
1 Steel strip images made available at http://faculty.neu.edu.cn/songkechen/zh_cn/zhym/263269/list/index.htm by Prof. Ke-Chen 

Song at Northeastern University, China. 
PCB images are publicly available at https://github.com/Ironbrotherstyle/PCB-DATASET. 
Casting product images are made available under CC BY-NC-ND 4.0 license by  
Ravirajsinh Dabhi  at https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product/data. 

 

scratch patch 

classification of defects in 

steep strips 

classification of defects in 

printed circuit boards 

missing hole short Good Defective 

casting product quality 

inspection 

Object detection 

Identify and locate objects 

of interest within an image 

missing 

holes 

Image segmentation 

detection 

Classify each pixel of image to 

the different classes of interest 

short 

relevant 

pixels 

identified 

http://faculty.neu.edu.cn/songkechen/zh_cn/zhym/263269/list/index.htm
https://github.com/Ironbrotherstyle/PCB-DATASET
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 1.3: Examples of acoustics-based condition monitoring in process industry 

 

 

 

detection of mechanical 

issues in motors 

detection of abnormal distillation 

column operations (such as 

flooding) 

detection of pipeline 

leakages via high-frequency 

acoustic sensors 

Process monitoring in the deep learning era 

Computer vision and acoustic monitoring owe the resurgence in their usage for plant 

health management due to the recent computational advances in deep learning. Deep 

learning allows features to be extracted automatically from raw data and therefore has 

significantly changed how process data are analyzed for insights. Technically, deep 

learning refers to usage of artificial neural networks with several hidden layers. Over the 

last decade, several algorithmic innovations have taken place that have made deep 

learning computationally tractable.  

In addition to the enhanced tractability of deep models’ training, the emergence of user-

friendly frameworks such as Keras and PyTorch that allow creation of deep neural 

networks quickly in just a few lines of code has led to democratization of process data 

science. 

Innovations that contributed to 

deep learning success 
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1.2 CV Workflow in Manufacturing Environment 

 

Figure 1.4 below shows a typical workflow for automated visual inspection. As is evident, the 

workflow is the same as any other ML exercise.  

 

 
Figure 1.4: Typical computer vision workflow in manufacturing environment2 

 

Arguably, the most critical phase in this workflow is acquisition of high-quality images. As 

shown in Figure 1.4, elaborate optical illumination platform is often setup to ensure high 

contrast images with minimal interference of environmental light. Acquired images are then 

sent for pre-processing to improve image quality and help CV models understand the images 

better. During model training, the common pre-processing steps include image resizing, 

augmentations, denoising, etc. Many CV models have strict specification for the input image 

size and therefore images are resized accordingly.  Image augmentation entails artificial 

generation of new images using the original input images. This helps to overcome the 

limitations of small-sized datasets. DL models are ‘data-hungry’ and in the manufacturing 

industry world, you will rarely have a large-sized dataset. Therefore, you will often use 

techniques such as cropping, rotation, zooming, etc., to create different versions of your 

images to train your DL model. Post pre-processing, images are used to train models. The 

most common architecture employed for CV tasks is convolutional neural network which 

specialize in handling grid-like data. We will talk more about CNNs in Chapter 2.  

 
2 Camera Unit/Light picture taken from Lv et al., Deep Metallic Surface Defect Detection: The New Benchmark and 
Detection Network. Sensors, 2020 shared under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

In
sigh

ts 

Image acquisition Model building 

image database 

image  image pre-

processing 

model training 

Model inference 

image pre-

processing 

CNN Model 
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Working with images in Python 

An image is simply a grid of numbers for computers. Consider the following grayscale 

image (taken from MINIST dataset provided in Keras) of size 28 X 28 pixels. 

A color image has three of these 2D channels corresponding to the Red, Green, and 

Blue components. 

• each pixel takes a value (between 0 and 255) denoting 

the intensity of light 

.  

28 X 28 

28 X 28 X 3 

• each pixel is assigned a tuple of 3 values corresponding to the 

red, green, and blue components, respectively 

• E.g., (0,0,0) ⇒ black pixel 

        (255,0,0) ⇒ red pixel 

        (255, 255, 255) ⇒ white pixel 

The standard Python library for image manipulation is Pillow which is an updated 

version of PIL (Python image library) library. Other popular options for image handling 

in Python are OpenCV and Keras API. The examples below show how to load, 

manipulate, and show images using Pillow and Matplotlib. 

.  

28 X 28 Numpy 

             array 

28 X 28 X 3 

Numpy array 
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# load image using Pillow 
from PIL import image 
img = Image.open('digit_color.jpeg') 
print(img.size) 
 
>>> (28, 28) 
img.show() # displays image using your computer's default application for photos 
 
# construct NumpPy array from image object 
import numpy as np 
imgData = np.asarray(img)  
print(imgData.shape) 
 
>>> (28, 28, 3) 
 
# resize image and save  
img_resized = img.resize((7,7)) # from 28 X 28 pixels to 7 X 7 pixels 
img_resized.save('digit_color_resized.jpeg') 
 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
#  load image as NumPy array directly using Matplotlib 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
from matplotlib import image, pyplot 
imgData2 = image.imread('digit_color.jpeg') # loads image as a 3D NumPy array 
pyplot.imshow(img) # displays image within a Matplotlib frame 
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1.3 ASD Workflow in Manufacturing Environment 

 

Consider the following two sound clips recorded from a faulty and a healthy air compressor. 

 

 

Go ahead and execute the shown code with the sound clips3 (code provided in the GitHub 

repository). Do you hear any difference in how the two machines sound? The difference is 

very obvious. However, how do you make a computer understand this difference? A sound is 

simply vibrations captured by air; therefore, the techniques that we learnt in Book 3 of the 

series for extracting features from a vibration signal can be utilized to analyze a sound signal. 

Alternatively, the time waveform or the spectrogram of the sound data can be passed as an 

input to a DL model to make inference about the equipment condition. The workflows shown 

in Figure 1.5 below summarize the above approaches.  

 

 
Figure 1.5: Approaches for equipment sound monitoring 

 
3 Sound clips taken from https://www.iitk.ac.in/idea/datasets/. Verma et. al, Intelligent Condition Based Monitoring 
using Acoustic Signals for Air Compressors, IEEE Transactions on Reliability, 2016. 
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https://www.iitk.ac.in/idea/datasets/
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You may be surprised to see a CNN show up in the ASD workflow as well! Well, spectrograms 

can be treated as images and therefore analyzed using CNNs. We will work through one such 

application in Chapter 5. 

 

 

 

 

 

 

Working with audio data in Python 

Several Python libraries are available to handle audio files. Among these, Librosa is a 

popular library with several advanced modules to analyze acoustic signals. Using Librosa, 

you can analyze an audio signal in time domain, frequency domain, and time-frequency 

domain as shown below. 

 
# load audio data 
import numpy as np, matplotlib.pyplot as plt 

import librosa 

 

clipPath = "AirCompressor_Data/Healthy/preprocess_Reading1.dat" 

data = np.loadtxt(clipPath, delimiter=',') 

  

# log-mel spectrogram (popular for analyzing audio signals) 

sr = 50000/3 # sampling rate: 50000 samples per 3 seconds 

mel_spectrogram = librosa.feature.melspectrogram(y=data, sr=sr, n_mels=64) 

log_mel_spectrogram = librosa.power_to_db(mel_spectrogram) 

 

plt.figure() 

img = librosa.display.specshow(log_mel_spectrogram, x_axis="time", y_axis="mel", sr=sr) 

plt.colorbar(), plt.title('log-mel spectrogram') 
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Summary 

 

This chapter impressed upon you the importance of computer vision and acoustic monitoring 

for plant health management. We familiarized ourselves with the typical workflows for 

analyzing visual and audio data obtained from a process plant, and looked at the available 

Python resources for handling such data. In the next chapter, we will look at the neural network 

architecture that powers the human-like machine intelligence for analyzing images and sound 

signals.  

 

 



 

11 
 

 

 

 

Chapter 2 
Convolutional Neural Networks 

 
NN is the standard artificial neural network architecture for working with visual data 

such as images and videos.  Gone are the days of explicit feature engineering with 

image data; CNNs are designed to automatically extract features and have, therefore, 

revolutionized the field of computer vision. Just like RNNs excel at handling data that exhibit 

temporal correlation, CNNs excel at extracting spatial correlations efficiently. CNNs had their 

first limelight moment with the introduction of LeNet architecture in the 1990s for recognition 

of handwritten numbers. Since then, several architectural innovations and deep learning 

advances have made CNNs super-powerful; these CNNs power modern self-driving cars, 

real-time face recognition, motion tracking, etc. Several books can be written on the topic of 

CNN architecture; however, the focus in the chapter is to provide an introductory treatment. 

 

CNN architectures are built using several basic layers such as convolutional layers, pooling 

layers, and fully connected layers. We will study about these layers and the various associated 

hyper-parameters (such as filter strides, padding type, etc.). Specifically, the following topics 

are covered 

• Introduction to CNN, convolutional layer, and pooling layer  

• Structure of a typical CNN 

• A simple CNN for recognition of handwritten numbers 

• Evolution of CNN architecture 

 

  

C 
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2.1 CNNs: An Introduction 

 

CNNs (convolutional neural networks) are one of the most popular types of neural networks 

and are inspired by how a human brain processes visual objects. As shown in Figure 2.1, 

pixels in a small local region of an image are combined to generate a feature value in the first 

layer of the network. The features from the first layer are further combined to generate higher-

level features. Upon training, the network learns to extract low-level features such as edges, 

textures in the early network layers which are combined progressively to form high-level 

features, providing the network a comprehensive understanding of the image. At the end of 

the network, a fully connected layer in combination with a sigmoid layer provides the output 

label for the image (in an image classification problem). CNNs get their name from the 

convolutional layers which form the backbone of these networks. However, as shown in Figure 

2.1b, there are other types of layers as well in a CNN. Let’s briefly familiarize ourselves with 

these commonly employed layers. 

 

 
Figure 2.1: (a) Feature extraction in CNN (b) A simple CNN architecture4 

 
4 Diagram shard under the Creative Commons Attribution-Share Alike 4.0 International license by Aphex34 
(https://commons.wikimedia.org/wiki/File:Typical_cnn.png) 
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https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Convolutional layer 

In a convolutional layer, a local region from the incoming feature map (or input image) gets 

mapped to a value in the outgoing feature map via a convolutional filter.  

.

 
Figure 2.2: A convolutional layer with a single filter 

 

In the above figure, the filter is a 2D matrix that slides over the incoming feature map in 

horizontal and vertical directions as shown below  

 
Figure 2.3: Convolution operation (concept behind padding is covered later) 
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The entire feature map is scanned using the same filter. The output of the above convolutional 

operation is a feature map. In the above illustration, the convolutional operation employed 10 

trainable parameters (9 filter weights and 1 bias). In practice, one filter is not sufficient to 

extract all the features from the incoming feature map and therefore, multiple filters are 

employed to generate multiple output feature maps as shown below. 

 

 
Figure 2.4: A convolutional layer with multiple filters 

 

Each of the filters in the above illustration has its own set of weights and bias. Therefore, for 

a kernel size 3 X 3, the total number of parameters becomes 40. Now consider a convolutional 

layer handling a color image (which, as we know, has 3 channels) or the multichannel 

convolutional output from the above illustration. How does the convolutional operation work 

now? Well, in this case, the filter becomes  a 3D matrix with the same number of channels as 

that in the incoming input. As before, each value in the output feature map involves element-

wise multiplications between the filter and the corresponding (3D) local region of the incoming 

input.  

 

 
Figure 2.5: A convolutional layer with a single multichannel filter 
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Figure 2.6: A convolutional layer with 4 filters handling 3-channeled input 

 

 

It is common to choose filters of size 5X5 or 3X3. Note that the number 

of channels of a filter is the same as the number of incoming feature 

maps. Also, the number of filters used is generally increased as one 

goes deeper into the network (such as 64 filters in the first layer, then 

128, then 256, and so on).  

 

 

Strides 

In Figure 2.3, we saw that the filter moved one step at a time while scanning the input image. 

However, this is not mandatory. A filter can move multiple steps in the horizontal and vertical 

directions during scanning and the number of steps moved is called stride. The images below 

show the convolutional operation with a stride of two. 
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convLayer = keras.layers.Conv2D(4, kernel_size=(3, 3), activation=’relu’) 
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Figure 2.7: Convolution with stride of 2 and zero padding5 

 

Padding 

In the previous illustration, we used zero padding to handle boundary pixels such that with 

stride of 1, the width and height of the feature maps remain the same as those of the input 

feature maps. This is also called the ‘SAME’ padding configuration. An alternative is ‘VALID’ 

configuration wherein no padding is done and therefore resulting in a smaller output feature 

map. An illustration is shown below. 

 

 

 
5 Images (Copyright © Vincent Dumoulin, Francesco Visin) obtained from 
https://commons.wikimedia.org/wiki/File:Convolution_arithmetic_-_Padding_strides.gif shared under MIT license 
(https://opensource.org/license/mit) 

Input feature 
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Output feature 

map 

Filter 

https://commons.wikimedia.org/wiki/File:Convolution_arithmetic_-_Padding_strides.gif
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Figure 2.8: Convolution with stride of 1 and no padding6 

 

Pooling layer 

While a convolutional layer extracts features from incoming feature maps, a pooling layer 

shrinks the size of the feature maps. It is typical to put a pooling layer after a convolutional 

layer. Just like convolution, the pooling operation works on a small region of a feature map at 

a time. However, there are no trainable parameters in a pooling layer. All that happens is that 

the average or maximum (more commonly used) value from the local region is extracted as 

illustrated below for max pooling  

 

 

 
6 Images (Copyright © Vincent Dumoulin, Francesco Visin) obtained from 
https://commons.wikimedia.org/wiki/File:Convolution_arithmetic_-_No_padding_strides.gif shared under MIT license 
(https://opensource.org/license/mit) 
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The pooling operation takes place on each incoming channel independently and therefore, 

the number of output channels equals the number of input channels. 

 

 

 
Figure 2.9: Pooling operation on multi-channel input 

 

 

                                Global pooling 

If desired, an incoming feature map can be shrunk down to a single value via 

global pooling. Keras provides classes GlobalMaxPooling2D and 

GlobalAveragePooling2D for this. 

 

 

 

We alluded to before that the classification output is generated via fully connected layers. 

However, how do we convert the 3D feature maps to the neurons in a fully connected layer? 

This is where the flattening operation is used, wherein the feature maps are unfolded as 

shown below  
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2.2 A Simple CNN for Handwritten Digit Recognition 

 

In the previous section, we saw how easy it is to define a convolutional or pooling layer using 

Keras. It is equally easy to stack together several of these layers to create a CNN and train 

the network. In this section, we will create a simple CNN to classify images of handwritten 

digits (0 to 9) of the kind shown below 

 

 

This is a popular dataset (called MNIST dataset) in the CV world and is conveniently bundled 

within Keras. Each image is a grayscale image of size 28 X 28 pixels. Let’s load the dataset 

in our workspace and pre-process the images to prepare them for model training. 

# import packages 
import numpy as np, matplotlib.pyplot as plt 
import tensorflow as tf 
from tensorflow import keras  
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# load data  
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() # 70000 images in dataset 
print('training input data shape: ', x_train.shape), print('test input data shape: ', x_test.shape) 
print('training output data shape: ', y_train.shape), print('test output data shape: ', y_test.shape)  
 
>>> training input data shape:  (60000, 28, 28) 

test input data shape:  (10000, 28, 28) 
training output data shape:  (60000,) 
test output data shape:  (10000,) 

 
# reshape each image's 2D data into a 3D shape with 1 channel (i.e., of shape 28 X 28 X 1) 
x_train = x_train.reshape((x_train.shape[0], 28, 28, 1)) 
x_test = x_test.reshape((x_test.shape[0], 28, 28, 1)) 
 
# scale pixel values to the [0, 1] range 
x_train = x_train.astype("float32") / 255 
x_test = x_test.astype("float32") / 255  
 

 
With the training and test dataset prepared, we are ready to create our CNN model. We will 

implement the LeNet architecture as shown below.  

 

# define CNN 
lenet5 = keras.Sequential([ 
    keras.layers.Conv2D(6, (5,5), padding='same', input_shape=[28, 28, 1], activation='tanh'), 
    keras.layers.AveragePooling2D((2,2)), 
 
    keras.layers.Conv2D(16, (5,5), padding='valid', activation='tanh'), 
    keras.layers.AveragePooling2D((2,2)), 
 
    keras.layers.Conv2D(120, (5,5), padding='valid', activation='tanh'), 
    keras.layers.Flatten(), 
    keras.layers.Dense(84, activation='tanh'), 
    keras.layers.Dense(10, activation='softmax') # original LeNet model had used RBF activation 
]) 
lenet5.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 
lenet5.summary()  
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The above few lines of code is all that it takes to create a CNN. We assume that you have 
worked with ANNs in the previous books of the series and therefore, we assume your 

familiarity with the terms like optimizer, loss, etc. Model summary shows the number of model 

parameters in each layer of the network. Let’s do a quick calculation to see how we ended up 
with 156 parameters in the first convolutional layer: we have 6 filters each of size 5 X 5 ⇒ 
each filter has 25 weights and 1 bias ⇒ 26 parameters; therefore, all the filters in total have 

26 x 6 =156 parameters. Let’s train our model. 
 
# fit model  
history = lenet5.fit(x_train, y_train, batch_size=128, epochs=15, validation_split=0.1)  
 

 

 
⋮ 

 
 

 
Our model seems to be doing a good job at classifying the validation images. Let’s make 
predictions for the test images.  

 
# evaluate model 
lenet5.evaluate(x_test, y_test)  
 

 
 
fig, ax = plt.subplots(1, 10, figsize=(10,2)) 
for i in range(10): # first 10 test images 
    img = x_test[i] 
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    softmax_probabilities = lenet5.predict(np.expand_dims(img, 0)) # batch dimension added first 
    label_pred = np.argmax(softmax_probabilities) 
     
    ax[i].imshow(img) 
    ax[i].set_title(f'Pred: {label_pred}'), ax[i].axis('off') 
plt.show() 
 

 
 
 
Congratulations on your first successful convolutional neural network! Of course, production-
ready CNNs with more complex input images have several more bells and whistles, but the 
above steps are very typical of what goes behind creating modern CNNs.  
 
 

2.3 Evolution of CNNs 

 

LeNet was one of the first successful application of CNN for image classification. Several 

variants of LeNet’s architecture have since been developed by CV community; these variants 

include, amongst others, AlexNet, VGGNet, ResNet, Inception, GoogLeNet, and MobileNet. 

Among these, AlexNet was the first deep CNN that drew everyone’s attention by winning the 

2012 ILSVRC (ImageNet Large Scale Visual Recognition Challenge) competition. The input 

images were large (227 X 227 pixels) and there were 1000 output classes. Its architecture is 

shown below. 

 
Figure 2.10: The AlexNet architecture7  

 
7 Adapted from original image shared in Han et. al (Pre-Trained AlexNet Architecture with Pyramid Pooling and 
Supervision for High Spatial Resolution Remote Sensing Image Scene Classification, Remote Sensing, 2017), under 
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) 
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AlexNet uses 60 million parameters! It is computationally challenging to train; however, the 

authors of AlexNet brought together several deep learning innovations (such as dropout 

regularization, data augmentation, ReLU activation function, and GPU usage) to ensure 

efficient model training. AlexNet was followed by another pioneer CNN architecture called 

VGGNet that won the ILSVRC competition in 2014. Its architecture is shown below: it had 16 

layers and around 138 million parameters! 

 

 
Figure 2.11: The VGG-16 network architecture8  

 

AlexNet and VGG inspired pursuit of deeper networks. However, very deep networks brought 

the model training convergence issues to the fore. The winner of the 2015 ILSVRC 

competition, the ResNet9, introduced an ingenious trick10 to enable efficient training of very 

deep networks employing hundreds to thousands of layers. Consequently, ResNet is one of 

the most popular CNN architectures.  

 

The networks that we discussed in this section are classification 

networks. Networks used for object detection and image segmentation 

have witnessed remarkable architectural innovations in recent times. 

Some popular architectures in these categories include YOLO, 

RetinaNet, Mask R-CNN, U-Net, etc.  

 
8 Adapted from original image shared in De et. al (Monolithic-3D Inference Engine with IGZO Based Ferroelectric Thin 
Film Transistor Synapses, TechRxiv, 2022), under Creative Commons Attribution (CC BY) license 
(http://creativecommons.org/licenses/by/4.0/) 
9 https://arxiv.org/pdf/1512.03385.pdf 
10 The trick was usage of ‘skip connections’ wherein the output of a layer bypasses one or more layers and is fed as input 
to another layer  
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Summary 

 

This chapter covered the basics of convolutional neural networks and introduced you to the 

different component layers of a CNN. You became familiar with how to define a CNN and 

trained a simple CNN to classify handwritten digits. It was assumed that you trained the CNN 

on your PC. However, for more complex tasks and bigger CNN models, your PC may not be 

able to handle the CNN training workload. Therefore, the next chapter will introduce you to a 

popular (and free) online resource for CNN model development.   
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Chapter 3 
CNN Training Environment 

 
eep learning models are computationally intensive; training very deep computer vision 

models on a large dataset can take several days (even with GPUs). It is very likely 

that training such models on your personal computer is infeasible. How do you practice 

and experiment with deep learning-based CV then? To our fortune, some online platforms 

such as Google Colab and Kaggle exist that provide free compute resources! You can create 

Python notebooks and execute them on these platforms. Expectedly, there are certain 

limitations, but the free resources usually suffice for learning purposes.  

 

If you have not used Google Colab before, then this chapter will help you get familiar with the 

platform. If you are already familiar, then you may move to Chapter 4. We will cover the 

following topics related to Google Colab 

• Creating and executing notebooks  

• Accessing GPU resources 

• Saving notebooks and trained models 

 

  

D 
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3.1 Introduction to Google Colab 

 

Google Colab is an online Jupyter notebook environment that provide free access to RAM 

and GPU resources for education purposes. To access Colab, enter the URL 

https://colab.research.google.com in your browser; you should see the interface shown in 

Figure 3.1. 

 

 
Figure 3.1: Google Colab Jupyter Notebook interface 

 

Let’s try to train our MNIST digit classification model here. You may copy-paste the code from 

Chapter 2  in a new notebook (from File menu → New notebook) or open the Jupyter notebook 

mnist_CNN_classification.ipynb from Chapter 2 in Colab (from File menu → Open notebook 

→ Upload). We follow the later approach here.  
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Figure 3.2: The notebook file from Chapter 2 in Colab 

 

Before you execute the cells, you may want to change the hardware accelerator setting via 

the Edit menu as shown below 

 
Figure 3.3: GPU setting selection in Colab 
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You may now click on the ‘Connect’ button (on the top-right corner) and run each cell one at 

a time or run the whole notebook via Runtime menu → Run all. You should see the same 

results as those seen in Chapter 2. 

 

 
Figure 3.4: MNIST digit classification model training in Colab using GPU  

  

 

Saving notebook and model 

You can save your notebook as a .ipynb file in Google Drive or GitHub via the File menu. 

Once you have trained your model, you will want to save it to be able to use it for predictions 

later on. The following code will save your model in your Google Drive. 
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Once you have the model in your Google Drive, you can download it to your PC and do image 

evaluations on your PC. Your model is already trained and therefore, Colab’s compute 

resources are no longer required. Note that before you are able to save your model to Google 

Drive, you must ‘mount your drive’ using the button shown in Figure 3.1. To load the saved 

model in your script, you can use the load_model function. 

 

 

Summary 

 

This chapter provided a quick familiarization with the Google Colab platform. We learnt how 

to access free GPU resources and execute Notebook files on Colab. In the following chapters, 

we will utilize the Colab platform to develop automated visual product inspection and 

equipment acoustic monitoring solutions. 
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Chapter 4 
Automated Product Quality Inspection via 

Computer Vision 

 
he field of computer vision has witnessed a flurry of research and innovations in the last 

decade. Nonetheless, the subfield of image classification is more or less a mature field. 

Object detection and image segmentation models use the image classification models 

as their backbone. Therefore, in this chapter, we will focus on image classification and make 

ourselves familiar with the concept of transfer learning. Specifically, we will look at a steel-

strip image dataset with the objective to classify product images into different faulty classes. 

While building a computer vision solution, you may encounter several challenges: your 

dataset may be too large to fit in your PC’s memory or you may not have enough images to 

overcome model overfitting. Several solutions with varying degrees of complexity have been 

devised for these commonly encountered obstacles. We will touch upon some of these 

solutions. 

 

Computer vision is one of the marvels of modern computer science and is, inarguably, a 

complex task. However, the ML community has come together and provided several useful 

resources to make computer vision more accessible: these include open-source datasets, 

open-source pre-trained state-of-the-art models, user-friendly modeling frameworks, etc. This 

implies that a model that has been trained by somebody else using large computational 

resources on millions of images can be used by you with some tweaks to solve your specific 

problem (and that too on your laptop potentially). Sounds interesting, doesn’t it? Let’s jump 

right into it and cover the following topics  

• Creating a CNN model from scratch for steel product defect classification  

• Introduction to transfer learning and fine-tuning CNN models 

• Steel product defect classification via transfer learning 

 

  

T 
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4.1 NEU Steel Defect Dataset 

 

To demonstrate how to build a CNN network for quality inspection, we will use the NEU 

(Northeastern University) surface defect dataset11. The dataset consists of images of steep 

strip surfaces exhibiting six types of defects (Figure 4.1). A total of 1800 images (200 X 200 

pixels) are provided (300 images belonging to each class of defect).  

 

 
Figure 4.1: Defect classes in NEU surface defect dataset 

 

Steel strip is among the main products of iron and steel industry and the quality (strength, 

resistance to corrosion, etc.) of the steel strip is negatively impacted by the presence of the 

aforementioned defects. Therefore, it is desired to have an inspection system that can 

promptly detect the presence of a defective steep strip and notify the plant personnel.  

 

 
11 Available at http://faculty.neu.edu.cn/songkechen/zh_cn/zhym/263269/list/index.htm 
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4.2 Steel Defect Classification Modeling from 

Scratch 

 

To train a CNN-based steel strip defect classification model, we will utilize Google Colab. The 

complete notebook is provided on GitHub as NEU-classification-fromScratch.ipynb. The 1800 

images have been divided into a training dataset (1728 images) and a test dataset (72 images; 

12 images from each class). Also, as is usually done for CV classification tasks, the images 

have been segregated into separate folders corresponding to the six defects. The folder 

hierarchy12 looks as follows 

 

The dataset is uploaded to Google Drive as a zipped file and then unzipped in Colab using 

the following code. Before running the code below, make sure that your Google Drive has 

been mounted (mounting procedure was illustrated in Chapter 3).  

# unzip 
!unzip -q -o './drive/MyDrive/NEU-data-TrainTest.zip' -d './'  

 

Upon executing the above command in a Colab cell, you should see your images as follows 
 

 
Let’s now import some packages and ‘load’ the images. 

 
12 NEU surface defect dataset is also available on Kaggle (https://www.kaggle.com/datasets/fantacher/neu-metal-
surface-defects-data/data) in the segregated form. If using this dataset, then place the validation images in the training 
dataset to be consistent with the illustration in this chapter.  
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# import required packages 
import matplotlib.pyplot as plt, numpy as np 
import tensorflow as tf 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from tensorflow.keras import layers, models 
 

You are probably not familiar with the ImageDataGenerator class. This class allows just-in-

time loading of images and avoids loading all the images into memory at once. In Chapter 2, 
while building MNIST classification model, we had loaded data from all the images in our 
workspace. However, this may not be practical when you are dealing with millions of images. 
Several techniques have been devised by the CV community to handle large datasets; the 

ImageDataGenerator class is a very convenient option13 for just-in-time loading (also termed 

lazy loading) of images. This class also supports several just-in-time image pre-processing 
such as scaling, resizing, data augmentation, etc. 
 

 
 

 
13 Other popular options for creating image input pipelines include tf.keras.utils.image_dataset_from_directory and 
tf.data.Dataset 

# create iterators to progressively load images later in the code 
train_datagen = ImageDataGenerator(rescale = 1/255.0, validation_split = 0.2) 
test_datagen = ImageDataGenerator(rescale = 1/255.0) 
 
fit_iterator = train_datagen.flow_from_directory( 
    directory = './NEU-data-TrainTest/train', 
    target_size = (200, 200), 
    batch_size = 16, 
    class_mode = 'categorical', 
    subset='training') 
 
valid_iterator = train_datagen.flow_from_directory( 
    directory = './NEU-data-TrainTest/train', 
    target_size = (200, 200), 
    batch_size = 16, 
    class_mode = 'categorical', 
    subset='validation') 
 
test_iterator = test_datagen.flow_from_directory( 
    directory = './NEU-data-TrainTest/test', 
    target_size = (200, 200), 
    batch_size = 16, 
    class_mode = 'categorical', shuffle= False)  
 

>>> Found 1386 images belonging to 6 classes. 

Found 342 images belonging to 6 classes. 

Found 72 images belonging to 6 classes. 

images will be scaled when 

loaded 

automatically detects 

folders belonging to 

different classes 

16 randomly chosen images 

are fetched at a time 
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# check class names 
class_names = fit_iterator.class_indices 
class_names = list(class_names.keys()) 
print(class_names) 
 
>>> ['Crazing', 'Inclusion', 'Patches', 'Pitted', 'Rolled', 'Scratches'] 
 

The code below shows how fit_iterator can be used to load images from the fitting dataset14. 

# let's load a few images from the fitting dataset via the iterator 
images, labels = fit_iterator.next() # label for each image is in one-hot encoded form 
 
fig, axes = plt.subplots(nrows=4, ncols=4) 
for i in range(16): 
    image, label = images[i], labels[i] 
    label_name = class_names[np.argmax(label)] 
    row, col = i//4, i%4 
    axes[row][col].imshow(image) 
    axes[row][col].set_title(label_name) 
    axes[row][col].axis('off') 
plt.show() 

 
In the above code, the next method of the iterator returns a tuple of two numpy arrays: an 
array of pixel values and an array of (one-hot encoded) labels. Execution of the above code 
results in the following 
 

 
 

14 Note that tf.keras.preprocessing.image.ImageDataGenerator has been deprecated. However, it is easy to understand 
for a beginner and therefore used in this case-study to illustrate the concept of lazy loading of images. 
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Let’s now define our CNN model and train it.  

# define the CNN model 
num_classes = len(class_names) 
 
model = tf.keras.models.Sequential([ 
    tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(200, 200, 3)), 
    tf.keras.layers.MaxPooling2D(2, 2), 
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'), 
    tf.keras.layers.MaxPooling2D(2,2), 
    tf.keras.layers.Conv2D(128, (3,3), activation='relu'), 
    tf.keras.layers.MaxPooling2D(2,2), 
    tf.keras.layers.Flatten(), 
    tf.keras.layers.Dense(256, activation='relu'), 
    tf.keras.layers.Dropout(0.2), 
    tf.keras.layers.Dense(num_classes, activation='softmax') 
]) 
 
model.summary()  
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# compile and fit 
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 
history = model.fit(fit_iterator, epochs = 30, verbose= 1, validation_data = valid_iterator)  
 
 

 
 

⋮ 
 

 
 

 

You can notice that the fit_iterator and the valid_iterator were passed along to the network 

fitting function wherein they are used to fetch just enough images as needed for an iteration.  

 
# plot validation curve 
plt.figure() 
plt.plot(history.history['accuracy'], label='Fitting Accuracy') 
plt.plot(history.history['val_accuracy'], label='Validation Accuracy') 
plt.xlabel('Epoch'), plt.ylabel('Accuracy'), plt.legend() 
 
 

 
 

Let’s check the model’s performance on the test images.  
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# check performance on test dataset 
result = model.evaluate(test_iterator) 
print("Test loss, Test accuracy : ", result)  
 
>>> Test loss, Test accuracy :  [0.249, 0.958] 
 
# plot confusion matrix for test dataset 
from sklearn.metrics import confusion_matrix 
import seaborn as sns 
 
probs_preds = model.predict(test_iterator) # each image is assigned 6 probabilities  
                                                                                           corresponding to the 6 fault classes 
labels_preds = probs_preds.argmax(axis=1) # numeric label for each image 
conf_matrix = confusion_matrix(test_iterator.classes, labels_preds) 
 
fig, ax = plt.subplots() 
sns.heatmap(conf_matrix, fmt='g',  annot=True) 
ax.set_xlabel('Predicted labels'), ax.set_ylabel('True labels'), ax.set_title('Confusion Matrix') 
ax.set_xticklabels(class_names), ax.set_yticklabels(class_names, rotation=45)  
 

 

 

 

It wasn’t very difficult to obtain an industrial-scale CV model, was it? Note that we did not 

attempt to optimize the network hyperparameters (such as the number of layers, number of 

filters in each convolutional layer, number of neurons in the fully connected layers, etc.). You 

would undertake an exhaustive hyperparameter optimization exercise to obtain a production-

ready model.  
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4.3 Steel Defect Classification via Transfer Learning  

 

You will often not need to define and train a CNN network from scratch. Many state-of-the-

art pre-trained CV models are made available by Keras and can be loaded with just a single 

line of code as follows: 

 

pretrained_model = tf.keras.applications.VGG16( weights='imagenet') 

 

The above line instantiates a VGG16 model and downloads weights trained on ImageNet 

dataset. One issue with the above code is that the pre-trained model will classify your image 

to one of the 1000 object classes from the ImageNet dataset. However, your image dataset 

may be very different from the ImageNet dataset. Therefore, what you would want is to take 

the feature extraction part of the pre-trained model and add your own classification part to it 

to customize it to your specific purpose. Moreover, when you train this customized model, you 

would not want to change the weights of the pre-trained model; this is accomplished by 

‘freezing’ the pre-trained model’s layers as shown below8.  

 

 

In
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t 
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Frozen 

Replace & train 

pretrained_model = tf.keras.applications.VGG16(include_top=False, weights='imagenet') 

pretrained_model.trainable = False 

freezes the pre-trained layers 

removes the classification head of 

the original VGG16 model 
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Let’s again work on our NEU dataset and see how we can attach a custom classification head 

to a pre-trained model. Hopefully, this transfer learning exercise gives us a more accurate 

model than the one we got previously. The code for analyzing NEU dataset with transfer 

learning is provided in the file NEU-classification-transferLearning.ipynb. The code for data 

ingest pipeline remains the same. The network creation part is different as shown below. Note 

that we use a MobileNet model, a popular and computationally not very expensive model, as 

our base pre-trained model. 

 
# define the CNN model via transfer learning 
num_classes = len(class_names) 
base_model = tf.keras.applications.MobileNetV2(input_shape=(200, 200, 3), include_top=False,  

                                                                                                  weights='imagenet') 
base_model.trainable = False 
 
# add a trainable customized classification head to the pre-trained base model 
model = models.Sequential([ 
    base_model, 
    layers.GlobalAveragePooling2D(), 
    layers.Dense(256, activation='relu'), 
    layers.Dropout(0.5), 
    layers.Dense(num_classes, activation='softmax') 
]) 
 
model.summary() 
 
 

 
 
# compile and fit 
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 
history = model.fit(fit_iterator, epochs = 9, verbose= 1, validation_data = valid_iterator) 
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Did you notice that with transfer learning we reach pretty high fitting and validation accuracies 

in just a couple of epochs? Let’s check the model’s performance on the test images. 

 
# check performance on test dataset 
result = model.evaluate(test_iterator) 
print("Test loss, Test accuracy : ", result)  
 
>>> Test loss, Test accuracy :  [0.024, 0.986] 
 

 

 

# visualize predictions 
images, labels = test_iterator.next() 
 
fig = plt.figure() 
for index, image in enumerate(images): 
    ax = fig.add_subplot(4, 4, index+1) 
    plt.imshow(image) 
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    image = np.expand_dims(image, 0) # adding a batch dimension 
    probs_pred = model.predict(image) # softmax probabilities for the 6 fault classes 
    probs_pred = np.squeeze(probs_pred) # removing the batch dimension 
 
    label_actual = np.argmax(labels[index]) 
    label_pred = np.argmax(probs_pred) 
 
    if label_pred == label_actual: 
        color='blue' 
    else: 
        color='red' 
 
    ax.set_title(f'Actual: {class_names[label_actual]} \n Pred: {class_names[label_pred]}', color=color) 
    ax.axis('off')  
 
 

 
 
 
Hopefully, you can appreciate the ease with which you can use state-of-the-art pre-trained 
models using modern frameworks like Keras. 
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Summary 

 

This chapter provided a whirlwind tour of building CNN-based CV models. Two approaches 

were covered: building CNN models from scratch and via transfer learning. In this chapter, we 

also covered the concept of lazy loading of images and the importance of properly designing 

the image ingest pipeline. An easy-to-understand approach using ImageDataGenerator was 

illustrated and more modern approaches were referenced. This chapter should give you a 

very good idea of what goes behind creating modern CV models. There are many CV-related 

concepts (such as data augmentation, creating production-level modeling pipelines on cloud, 

etc.) that we did not touch upon (or covered in detail) in this short book. Nonetheless, you 

should now have the basic foundations to approach the advanced CV topics with confidence. 

 

Fine-tuning 

You may still be marveling at how a model trained using ImageNet dataset 

(https://www.image-net.org/about.php) be used successfully on a completely unrelated 

NEU steel strip dataset. Well, that’s the beauty of computer vision. Any object in an image 

is a sum-total of some low-level features; the feature extraction base of the pre-trained 

models ‘knows’ how to extract the low-level features and your custom classification head 

then does the rest of the job.  

 

Nonetheless, you may encounter situations where transfer learning does not yield 

satisfactory performance and therefore the feature extraction layers need to be 

customized as well for your specific problem. A common recourse in such cases is to fine-

tune your trained model after transfer learning. To accomplish this, you can unfreeze the 

base layers and train you model for a few more epochs. The choice of learning rate 

becomes crucial as too high a learning rate may ‘ruin’ the pre-trained weights of the 

convolutional base and too low a learning rate can make the training convergence very 

slow. A customary practice is to adjust the learning rate with epochs as shown below 
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Chapter 5 
Automated Equipment Monitoring Using Sound 

 
perating plant equipment at their mechanical limits with high reliability is the new craze 

among plant managers in the Industry 4.0 era. Proactive, automated, and smart 

monitoring of equipment is key to achieving the aforementioned objectives. Sound-

based anomaly detection is one of the techniques used to detect equipment abnormalities at 

early stages of failures. The rationale is simple: If a machine starts making abnormal sound, 

then most likely it is malfunctioning. Acoustic monitoring is also attractive due to the ease of 

installation of the microphone sensors to capture sound. Correspondingly, implementations 

of audio-based predictive maintenance solutions are on the rise in process industry.  

 

Despite its apparent advantages, audio-based anomaly detection is not among the top 

equipment condition monitoring techniques. Lack of adequate data from past malfunctions 

hinders development of supervised fault detection (and classification) solutions. One may 

build fault detection solutions using sound data taken from only normally functioning 

machines; however, preventing false alerts due to background noise remains  a big challenge. 

Nonetheless, smart algorithms are being devised to handle background noise appropriately 

and therefore, acoustics-based equipment monitoring is poised to gain more prominence. 

 

Traditionally, abnormal sound detection has been performed through explicit feature 

engineering using the sound signal in its time-waveform, frequency, and time-frequency 

representations. Now-a-days, deep learning is frequently employed to automatically extract 

relevant features. In this chapter we will look at both of these techniques. Specifically, the 

following topics are covered  

• Introduction to air compressor sound dataset 

• Abnormal sound detection using classical machine learning 

• Abnormal sound detection using deep learning 

 

  

O 
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5.1 Air Compressor Sound Dataset 
 

The acoustic dataset (https://www.iitk.ac.in/idea/datasets) that we will work with in this chapter 

was collected on a reciprocating type air compressor. The dataset contains 225 audio files 

(each 3 seconds long) for each of the eight conditions of the compressor. 

 

 
Figure 5.1: Classes of audio files in the air compressor sound dataset [use the notebook file 

soundDataExplore.ipynb to play the sound for each of the machine state] 

Condition Sample audio file 

Healthy 

Leakage inlet valve fault 

(LIV) 

Leakage outlet valve fault 

(LOV) 

Non-Return valve fault 

(NRV) 

Flywheel fault 

Rider belt fault 

Piston ring fault 

Bearing fault 
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The authors of the dataset also provide the features extracted from the audio files in a 

separate dataset15. Features are extracted in the frequency and time-frequency domains. We 

will use this feature dataset to build an SVM-based fault classification model. 

 

Converting sound signal into images 

We saw in Chapter 1 that a sound signal is simply a vibration signal, and we know that a 

spectrogram (introduced in Book 3 of the series) is a very useful time-frequency 

representation of a vibration signal. A spectrogram provides a 2D visual representation of the 

sound signal and we have seen that CNNs excel at analyzing such visual inputs. Therefore, 

computer vision techniques can be employed for abnormal sound detection as well!  

 

For audio signal analysis, instead of spectrogram, log-mel spectrogram is commonly 

employed. A log-mel spectrogram is a type of spectrogram where the frequency axis is not 

linear but based on mel scale16. The mel scale provides better resolution for lower frequencies 

and therefore mirrors the sensitivity of human ears (humans can differentiate between 500 Hz 

and 600 Hz better than differentiating between 10,000 Hz and 10100 Hz!). A log-mel 

spectrogram can be easily obtained using the Librosa library. 

 

 

 
15 Download the ‘Air Compressor Health State Dataset Features’ dataset 
16 https://en.wikipedia.org/wiki/Mel_scale 

Log-mel spectrogram 
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In the acoustic analysis world, another 2D visual representation that is commonly employed 

is called MFCCs (mel frequency cepstral coefficients) which is a compressed version of a log-

mel spectrogram. 

 

 

 

 

5.2 Abnormal Equipment Sound Classification 

using Support Vector Machines 

 

To illustrate how abnormal sound detection and classification can be performed using 

classical machine learning techniques, we will use the feature dataset to train a support vector 

machine classifier as shown below.  

# import required packages 
import numpy as np, pandas as pd, matplotlib.pyplot as plt, seaborn as sn 
from sklearn.preprocessing import LabelEncoder 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import StandardScaler 
from sklearn.svm import LinearSVC 

Log-mel spectrogram 
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from sklearn.model_selection import GridSearchCV 
from sklearn.metrics import confusion_matrix 
 
 
# read data [the provided csv file contains 1800 rows: each row contains features extracted from  
                                               # data from an audio file and the associated label (in the last column)] 
dataRaw = pd.read_csv('WPTFeatures254_FaultStates.csv', delimiter=',') 
print(dataRaw.shape) 
 
>>> (1800, 255) 
 
# separate features and label 
input_data = dataRaw.iloc[:,:-1].values  
output_label_text = dataRaw.iloc[:,-1] 
 
# convert text labels to numeric labels 
le = LabelEncoder().fit(output_label_text) 
output_labels = le.transform(output_label_text) 
print(le.classes_) 
 
>> ['Bearing' 'Flywheel' 'Healthy' 'LIV' 'LOV' 'NRV' 'Piston' 'Riderbelt'] 
 
# check number of samples for each class 
unique_labels, counts = np.unique(output_labels, return_counts=True) 
 
plt.figure(), plt.bar(unique_labels, counts) 
plt.xlabel('Class'), plt.ylabel('Number of samples') 
plt.xticks(range(len(unique_labels)), labels=le.classes_, rotation=45) 
 
 

                    
 
# separate training and test data and scale 
X_train, X_test, y_train, y_test = train_test_split(input_data, output_labels, test_size=0.2,  
                                                                                              stratify=output_labels, random_state=100)  
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scaler = StandardScaler().fit(X_train) 
X_train_scaled = scaler.transform(X_train) 
X_test_scaled = scaler.transform(X_test) 
 
# fit model with grid search-based hyperparameter determination 
param_grid = {'C':[0.01, 0.05, 0.1, 1, 10]} 
gs = GridSearchCV(LinearSVC(dual='auto'), param_grid, cv=3).fit(X_train_scaled, y_train) 
print('Optimal hyperparameter:', gs.best_params_) 
 
>>> Optimal hyperparameter: {'C': 0.05} 
 
# predict for test data and plot confusion matrix 
y_test_pred = gs.predict(X_test_scaled) 
conf_mat = confusion_matrix(y_test, y_test_pred) 
 
plt.figure() 
sn.heatmap(conf_mat, annot=True, cmap='Blues', xticklabels=le.classes_, yticklabels=le.classes_) 
plt.ylabel('True Fault Class', color='maroon') 
plt.xlabel('Predicted Fault Class', color='green')  
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5.3 Abnormal Equipment Sound Classification 

using CNN 

 

The perfect accuracy of the SVM classifier suggests that the time-frequency features contain 

enough information to enable differentiation between the audio data associated with different 

machine health states. Let’s see if we can employ a CNN to extract these features directly 

from the log-mel spectrogram and MFCCs ‘images’. The input feature map for each audio file 

is created by concatenating the log-mel spectrogram and MFCC matrices as shown below 

 

 

 

We will again work17 in Google Colab and like we did in Chapter 4, we will upload air 

compressor data on Google Drive. Complete code is provided in the notebook 

AirCompressorSound-classification.ipynb. Let’s begin by unzipping the Google Drive file in 

Colab and importing some packages. 

 
17 The CNN-based ASD approach presented in this chapter is adapted from the approach provided at 
https://github.com/SAP-samples/btp-ai-sustainability-bootcamp/blob/main/src/ai-models/predictive-
maintenance/notebooks/sound_based_predictive_maintenance.ipynb which is shared under Apache License 2.0. 

Log-mel spectrogram MFCCs 

(64 X 98) 

  

(40 X 98) 

  

https://github.com/SAP-samples/btp-ai-sustainability-bootcamp/blob/main/src/ai-models/predictive-maintenance/notebooks/sound_based_predictive_maintenance.ipynb
https://github.com/SAP-samples/btp-ai-sustainability-bootcamp/blob/main/src/ai-models/predictive-maintenance/notebooks/sound_based_predictive_maintenance.ipynb
https://github.com/SAP-samples/btp-ai-sustainability-bootcamp/blob/main/LICENSE


 

MLforPSE.com|50 
 

# unzip 
!unzip -q -o './drive/MyDrive/AirCompressor_Data.zip' -d './'  
 
# import packages 
import numpy as np, pandas as pd, matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
from tensorflow.keras import models, layers 
import tensorflow as tf 
import librosa 
from glob import glob 
import seaborn as sns 

 

Now we will prepare data for training and test. Each audio file needs to be converted into its 

combined spectrogram and MFCC matrix. Let's first assign the health label to each audio file. 

# get file paths and assign corresponding class labels 
clips = glob('./AirCompressor_Data/*/*') # fetches all the file names 
clips_df = pd.DataFrame(data={'path':clips, 'label':[ c.split('/')[-2]  for c in clips]} ) 
 
class_dict=dict(enumerate(clips_df.label.unique() )) 
classes = {v: k for k, v in class_dict.items()} 
clips_df['class']=clips_df['label'].apply(lambda x : classes[x]) # each file is assigned a sparse label 
clips_df 
 

 

Next, we define a utility function that takes an audio clip and returns its combined acoustic 

features: log-mel spectrogram and MFCCs. 
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sr=50000/3 
def acoustic_feature_computation(clip): 
    data = np.loadtxt(clip, delimiter=',') 
    mel_spectrogram = librosa.feature.melspectrogram(y=data, sr=sr, hop_length=512,  
                                                                                                          n_mels=64, fmax=sr/2) 
    log_mel_spectrogram = librosa.power_to_db(mel_spectrogram) 
    MFCCs = librosa.feature.mfcc(y=data, sr=sr, n_mfcc=40, fmax=sr/2) 
    acoustic_features = np.concatenate((MFCCs,log_mel_spectrogram), axis =0) 
    return acoustic_features  
 

 
We can now create our fitting, validation, and test datasets. 

train, test = train_test_split(clips_df, test_size=0.10, random_state=25) 
train, validation = train_test_split(train, test_size=0.15, random_state=25) 
 
# apply the function acoustic_feature_computation to each audio file  
X_train, X_validation, X_test = [], [], [] 
y_train, y_validation, y_test = [], [], [] 
 
for i,r in train.iterrows(): # Iterate over the DataFrame rows 
    X_train.append(acoustic_feature_computation(r['path'])) 
    y_train.append(r['class']) 
 
for i,r in test.iterrows(): 
    X_test.append(acoustic_feature_computation(r['path'])) 
    y_test.append(r['class']) 
 
for i,r in validation.iterrows(): 
    X_validation.append(acoustic_feature_computation(r['path'])) 
    y_validation.append(r['class']) 
 

 
With the datasets prepared, we can build the CNN model now. 

initializer = tf.keras.initializers.GlorotUniform() 
CNNmodel = models.Sequential() 
 
# feature extraction part 
CNNmodel.add(layers.Conv2D(32, (4, 4),(2,2), activation='relu', input_shape=(104,98,1), 
kernel_initializer=initializer)) 
CNNmodel.add(layers.BatchNormalization()) 
CNNmodel.add(layers.Conv2D(32, (4, 4),(2,2), activation='relu', kernel_initializer=initializer)) 
CNNmodel.add(layers.BatchNormalization()) 
CNNmodel.add(layers.MaxPooling2D((2, 2))) 
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# classification head 
CNNmodel.add(layers.Flatten()) 
CNNmodel.add(layers.Dense(512, activation='relu',kernel_initializer=initializer)) 
CNNmodel.add(layers.Dropout(0.5)) 
CNNmodel.add(layers.Dense(64, activation='relu',kernel_initializer=initializer)) 
CNNmodel.add(layers.Dropout(0.5)) 
 
# Output 
CNNmodel.add(layers.Dense(8, activation='softmax')) 
 
CNNmodel.summary()  
 
 

 
 
 
# compile and fit 
CNNmodel.compile(optimizer= "adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(),  
                                    metrics = ['accuracy']) 
history = CNNmodel.fit(x=np.array(X_train, np.float32), y=np.array(y_train, np.float32), 
                                         validation_data = (np.array(X_validation, np.float32),  
                                                                        np.array(y_validation, np.float32)), 
                                         epochs=100) 
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⋮ 
 

 
 
 
# plot validation curve 
plt.figure() 
plt.plot(history.history['accuracy'], label='Fitting Accuracy') 
plt.plot(history.history['val_accuracy'], label='Validation Accuracy') 
plt.xlabel('Epoch'), plt.ylabel('Accuracy'), plt.legend() 
 
 

 
 
Our CNN model seems to be a perfect classifier with 100% accuracy on validation dataset. 

Let’s check its performance for test dataset. 

score = CNNmodel.evaluate(np.array(X_test, np.float32), np.array(y_test, np.float32)) 
print('Test accuracy:', score[1]) 
 
>>> Test accuracy: 1.0 
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# plot confusion matrix for test dataset 
from sklearn.metrics import confusion_matrix 
 
probs_preds = CNNmodel.predict(np.array(X_test, np.float32)) # each audio file is assigned 8  
                                                                                    probabilities corresponding to the 8 health states 
pred_class = probs_preds.argmax(axis=1) # numeric class for each audio file 
cf_matrix = confusion_matrix(y_test, pred_class) 
 
ax = sns.heatmap(cf_matrix, annot=True, cmap='Blues') 
ax.set_xlabel('\nPredicted Sound Category'), ax.set_ylabel('Actual Sound Category ') 
ax.set_xticklabels(class_dict.values(), rotation=30), ax.set_yticklabels(class_dict.values(), rotation=30) 
 
 

 

 

With this, we have come to the end of our quick foray into the world of CNN-based deep 

learning and its usage for building process monitoring solutions using visual and audio data. 

We saw how easy it is to build powerful modern equipment monitoring solutions using CNN.  

If desired, you can also build a combined audio and video-based smart process surveillance 

solution using the approaches covered in this book. 

 

Summary 

 

In this chapter, we quickly covered a couple of approaches for abnormal equipment sound 

detection. The illustrations covered the traditional approach entailing explicit feature 

engineering and the CNN-based deep learning approach for monitoring reciprocating air 

compressors.  
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End of the book 



 

 

 

Machine Learning in Python for Visual and Acoustic 

Data-based Process Monitoring  

Of process data science, By process data scientists, For process data scientists 

This book is designed to help readers gain quick familiarity with deep learning-based 

computer vision and abnormal equipment sound detection techniques. The book helps 

you take your first step towards learning how to use convolutional neural networks (the 

ANN architecture that is behind the modern revolution in computer vision) and build 

image sensor-based manufacturing defect detection solutions. A quick introduction is 

also provided to how modern predictive maintenance solutions can be built for 

process-critical equipment by analyzing the sound generated by the equipment. 

Overall, this short eBook sets the foundation with which budding process data 

scientists can confidently navigate the world of modern computer vision and acoustic 

monitoring.  

 

The following topics are briefly covered: 

• Introduction to computer vision (CV) and CNNs 

• Best practices for building CV solutions for detecting manufacturing defects 

• Building CNN-based CV solutions from scratch and via transfer learning 

• Introduction to equipment sound monitoring 

• Building equipment abnormal sound detection solutions using CNNs 
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