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Preface 
 

Everyday we hear stories about new feats being achieved by machine learning (ML) and 

artificial intelligence (AI) researchers that have the potential to revolutionize our world. 

Through humanoid robots, speech recognition, computer vision, driverless cars, fraud 

detection, personalized recommendations, and automated health diagnosis, machine 

learning has already become an integral part of our daily life. Moreover, away from the 

glitz of these ‘visible’ high-tech products, machine learning has also been making silent 

advances in process industries (chemical industry, biopharma industry, steel industry, 

etc.) where ML-based solutions are being increasingly used for predictive equipment 

maintenance, product quality assurance, process monitoring, fault diagnosis, process 

control, and process optimization. With increasing global competition and stricter product 

quality standards, industrial plants are relying upon machine learning tools (such as 

reinforcement-learning-based auto-adaptive process controller) to provide them the 

winning edge over competitors.  

 

Perhaps you are reading this book because you too have been inspired by the capabilities 

of machine learning and would like to use it to solve problems being faced by your 

organization. However, you might be struggling to find a definite guide that can help you 

decide which specific methodology to choose among the myriad of available 

methodologies. You may have come across a nice research article that showcases an 

interesting process systems application of a ML method. However, you might be facing 

difficulties trying to understand the intricate details of the algorithm. We won’t be surprised 

if you have struggled to find a data-science book that caters to the needs of a process 

systems engineer, considers unique characteristics of industrial process systems, and 

uses industrial-scale process systems for illustrations. We, the authors, have been in that 

phase. A process engineer will arguably find it more relevant and useful to learn principal 

component analysis (PCA) by working through a process monitoring application (the most 

popular application area of PCA in process industry) and learning how to compute the 

monitoring metrics. Similar arguments could be made for several other popular ML 

methods. There is a gap in available machine learning resources for industrial 

practitioners and this book attempts to cover this gap. 

 

In one sense, we wrote this book for our younger selves; a book that we wish had existed 

when we started experimenting with machine learning techniques. Drawing from our 

years of experience in developing data-driven industrial solutions, this book has been 

written with the focus on de-cluttering the world of machine learning, giving a 

comprehensive exposition of ML tools that have proven useful in process industry, 

providing step-by-step elucidation of implementation details, cautioning against the 
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pitfalls and listing various tips & tricks that we have encountered over the years, and using 

dataset from industrial-scale process systems for illustrations. We strongly believe in 

‘learning by doing’ and therefore we encourage the readers to work through in-chapter 

illustrations as they follow along the text. For reader’s assistance, Jupyter notebooks with 

complete code implementations are available for download. We have chosen Python as 

the coding language for the book as it convenient to use, has large collection of ML 

libraries, and is the de facto standard language for ML. No prior experience with Python 

is assumed. The book has been designed to teach machine learning from scratch and 

upon completion, the reader will feel comfortable at using ML techniques. 

 

Machine learning will continue to play significant role in unleashing the next wave of 

productivity improvements in process industry. We hope that this book will inspire its 

readers to develop novel ML solutions to challenging problems at work. We wish all the 

best to the budding process systems data scientist. 

 

Who should read this book 

This book provides a comprehensive step-by-step exposition of several popular machine 

learning techniques that have proven useful in process industry. Industry-relevant 

illustrations have been included in a ‘learn-by-doing’ format. Appropriate references to 

advanced treatment of specific topics are provided in each chapter. Therefore, the book 

will be useful to process technologists from industry, undergraduate and graduate 

students, ML researchers, as well as a general data-science enthusiast. If you belong to 

any of the following categories, you will enjoy reading this book. 

 

1) Process systems engineers or data scientists seeking to hone their ML skills 

2) Process systems engineers looking for ML solutions to specific problems (such as 

monitoring a high-dimensional multimode process)  

3) Budding process systems data scientists taking their first step into the ML world 

4) Budding data scientists (with no Python experience) looking to learn Python by 

working with real industrial datasets 

5) Process systems engineers who frequently use commercial data-science software 

(IBM SPSS, Aspen Mtell) and are interested in learning the technical details for an 

improved understanding of the methodologies. 

 

Pre-requisites 

No prior experience with machine learning or Python is needed. Undergraduate-level 

knowledge of basic linear algebra and calculus is assumed.  
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Book organization 

The book follows a holistic and hands-on approach to learning ML where readers first 

gain conceptual insight and develop intuitive understanding of a methodology, and then 

consolidate their learning by experimenting with code examples. Every methodology is 

demonstrated by using simple process system or numerical example to illustrate major 

characteristics of the method and then by implementing on industrial-scale processes. 

 

The book has been divided into four parts. Part 1 provides a perspective on the 

importance of ML in process systems engineering and lays down the basic foundations 

of ML. Part 2 provides in-detail presentation of classical ML techniques and has been 

written keeping in mind the various characteristics of industrial process systems such as 

high-dimensionality, non-linearity, multimode operations, etc. Part 3 is focused on 

artificial neural networks and deep learning. While deep learning is the current buzzword 

in ML community, we would like to caution the reader against the temptation to deploy a 

deep learning model for every problem at hand. Often, simpler classical models can 

provide as good, if not better, results as those from neural net models. For example, 

partial least squares (PLS) are still the most popular models for soft sensor development 

in process industry due to its simplicity and powerful capabilities of handling noisy and 

correlated data. Part 4 covers the important topic of deploying an ML solution over web. 

 

It was a deliberate decision to not divide the book in terms of supervised / unsupervised 

/ reinforcement-learning categories or application areas (process modeling, monitoring, 

etc.). This is because several methods overlap these categories which make it difficult to 

put them under a specific category. For example, SVM and SVR methods fall under 

supervised category while the related SVDD method falls under unsupervised category. 

Similar situation holds for PCA/PCR/PLS methods. A reader who is interested in a specific 

application area may use the table of contents as a guide to relevant sections in Parts 2 

and 3. Care has been taken to title the subsections in different chapters appropriately.  

 

Symbol notation 

The following notation has been adopted in the book for representing different types of 

variables: 

- lower-case, bold-face letters refer to vectors (𝒙 ∈ ℝ𝑚×1) and upper-case, bold-face 

letters denote matrices (𝑿 ∈ ℝ𝑛×𝑚) 

- individual element of a vector and a matrix are denoted as 𝑥𝑗 and 𝑥𝑖𝑗, respectively. 

- any ith vector in a dataset gets represented as subscripted lower-case, bold-faced 

letter (𝒙𝒊 ∈ ℝ𝑚×1)   
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Part 1 

Introduction & Fundamentals 
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Chapter 1 
Machine Learning for Process Systems 

Engineering 

 
Imagine yourself in the shoes of an operator or engineer responsible for uninterrupted and 

optimal operation of an oil refinery. Keeping an eye on each of the 1000s of process 

measurements being made every second to look for process abnormalities or opportunities 

for plant performance improvement is akin to finding a needle in a haystack. The task is 

undoubtedly overwhelming and is the primary reason why plant managers often complain 

about having ‘too much data but little knowledge and insight’. 

 

However, unlike humans, computers can be programmed to parse through large amounts of 

data in real-time, extract patterns, trends, and assist plant personnel in making informed 

business and operational decisions. This practice of learning about systems from data or 

machine learning has become an indispensable tool in process operations in the age of 

increasing global competition and stricter product quality standards. 

 

This chapter provides an overview of how the power of machine learning is harnessed for 

process systems engineering. Specifically, the following topics are covered 

• Unique characteristics of process data  

• Types of ML systems and typical workflow to convert data into insights 

• Classical applications of ML techniques in process industry 

• Common ML solution deployment infrastructure employed in industry  

 

Let’s now tighten our seat-belts as we embark upon this exciting journey of de-mystifying 

machine learning for process systems engineering. 
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1.1 What are Process Systems 

 

Process systems refer to a collection of physical structures that convert raw materials (wood, 

natural gas, crude oil, coal, etc.) into final consumer products (paper, fertilizers, diesel, energy, 

etc.) or intermediate products which are then used to manufacture other commodity materials. 

These process systems can range from a simple water-heating system to complex oil 

refineries. Figure 1.1 shows an example (petrochemical) plant comprising several processing 

units such as distillation columns, heat exchangers, pumps.  Process industry is a broad 

category that encompasses, amongst others, chemical industry, bioprocess industry, power 

industry, pharmaceuticals industry, steel industry, semiconductor industry, and waste 

management industry. 

 

 
Figure 1.1: Petrochemical plant image (obtained from pixabay.com) 

 

In process industry, the task of optimizing production efficiency, controlling product quality, 

monitoring the process are categorized as process systems engineering (PSE) activities. 

These tasks often require a mathematical model of the plant. The traditional practice has been 

to use first principles mathematical description of physio-chemical phenomena occurring 

inside each process unit to mathematically characterize the whole plant. However, as you 

may already know, building such fundamental models are time-consuming and difficult for 

complex systems. Machine learning (ML)-based methods provide a convenient alternative 

where process data are used to build empirical plant model which can be used for 

optimization, control, and monitoring purposes. Availability of large amount of sensor data has 

further boosted the trend of incorporating ML techniques for PSE and demand for process 

data scientists. 
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Let’s take a look at the kind of data generated in process industry. Majority of the process 

data include process stream flowrate, temperature, pressure, level, power, and composition 

measurements as shown in figure 1.2. Additionally, obtaining vibration signals from rotating 

equipment (motors, compressors), infrared or visual images, and spectra data are also 

common now-a-days. These indirect data are frequently utilized for predictive equipment 

maintenance and product quality control. 

 

 
Figure 1.2: A process flowsheet1 with typical flow (FI), temperature (TI), pressure (PI), 

composition (Analyzers), level (LI), power (JI) measurements. 

 
Characteristics of process data  

Industrial process data often exhibit characteristics which pose challenges to a process data 

scientist. Choosing an ML technique appropriate to the data is a pre-requisite for a successful 

project implementation. These characteristics include the following:  

• Dynamic: Process plants rarely operate at a perfect steady-state i.e., at fixed values of 

process inputs and outputs. Plants are often subject to random or systematic 

disturbances such as changing ambient conditions, process feed quality, and product 

demand which are handled by control system by manipulating process variables. This 

leads to fluctuations around a steady-state point or plants moving from one steady-

state to another.  

 
1 Adapted from the original flowsheet by Gilberto Xavier (https://github.com/gmxavier/TEP-meets-LSTM) provided under Creative-Commons Attribution 4.0 International 

License (https://creativecommons.org/licenses/by/4.0/). 
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• Time-varying: Correlations between process variables change over time due to gradual 

changes in process parameters. For example, heat transfer coefficient in a heat-

exchanger may change due to fouling or catalyst activity may degrade due to aging.  

 

• Batch vs continuous: While continuous processes are dominant in process industry, 

batch processes are also frequently employed, for example in semiconductor and drug 

manufacturing. Unlike continuous processes, batch processes are of finite durations 

and offer its own set of unique challenges such as batch-to-batch variations and 

inherent non-steady-state operation. Time itself becomes a crucial dimension for 

accurate modeling of temporal evolution of process variables within a batch. 

 

• Multimode operations: Multimode characteristics show up when a process plant 

operates primarily around a few distinct steady states. For example, a plant producing 

species a, b, and c may have different production recipes (set-points of process 

variables) for each of these recipes. Depending on the production schedule, the plant 

will switch from one recipe to another. Deploying a single global ML model for a 

multimode process often leads to lower accuracy compared to that obtained from 

building local models for each mode.  

 

• Discrete/Discontinuous:  Depending upon the production load, certain equipment may 

be switched on or off causing step changes in process behavior. For example, 

switching on an extra turbine or compressor causes step increase in power 

consumption.  

 

• Nonlinear: The complex physio-chemical phenomena (chemical reactions, vapor-liquid 

equilibrium, etc.) occurring inside process units are most often nonlinear. While linear 

models often provide good approximations when processes operate around a single 

steady-state, non-linear models become necessary when processes experience large 

fluctuations in the operating conditions. 

 

• High dimensionality: Modern process plants make hundreds of process-critical 

measurements. Considering that process plants make process adjustments in real-

time, high dimensionality becomes an issue when a computationally intensive 

methodology is adopted.  

 

• Multirate sampling: Not all process measurements are made at the same frequency. 

While temperature or pressure readings are sampled every second or minute, 

composition/analyzer measurements are often sampled at much lower frequency 

(once an hour or a day).   

 

In this book, we will study several ML methods in detail which have been designed to handle 

these different varieties of process systems. Let us first understand what we mean by machine 

learning. 
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1.2 What is Machine Learning 

 

At its core, machine learning simply means using computer programs and data for finding 

relationship between different components of a system and discovering patterns that were not 

immediately evident. This characteristic of using data to learn about the system makes 

machine learning interesting and different. System specific knowledge is not explicitly 

embedded into a ML program; the program extracts the knowledge from data. Figure 1.3 

compares ML approach with a non-ML approach for distillation column modeling: ML 

approach does not require system specific data such as number of stages or the type of 

packing. 

 

 
Figure 1.3: Computer program using first-principal approach (left) and ML approach (right) 

for modeling a distillation column 

 

We often marvel at the accuracy of recommendations made by Netflix or amazon for potential 

shows or products. These companies do not possess explicit information about our personal 

preferences or psychology (whether we like sci-fi movies or not). The data does all the trick! 

ML algorithms process past purchase data to discern the likes and dislikes of its customers 

and make recommendations. In process industry, manufacturers use ML methods to 

determine optimal equipment maintenance schedule using past maintenance and operating 

conditions data. Here again, data-based analysis provides considerable convenience over the 

alternative method of complex metallurgical analysis.  

 

The reliance on data alone to obtain reasonably good system approximation is one of the 

major reasons behind ML’s growing popularity. The barrier of requiring specific domain 

knowledge to be able to analyze a system has been circumvented by machine learning. ML 

algorithms are also universal in nature. For example, we can use the same data-clustering 

algorithm for analyzing demographics data, factory data, or economic data to obtain 

actionable knowledge. These properties combined with the surge in the amount of data 
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collected and the dip in the cost of computational resources had led machine learning to 

revolutionize several industries.  

 

The increasing popularity of machine learning does not mean domain 

knowledge is redundant. Domain expertise often helps to decide which ML 

algorithm to use and proper infusion of domain knowledge into ML 

methodology can sometimes increase model accuracy considerably. 

 

“Why don’t we just build a model using first-principles and get very accurate models? Why 

rely on data?” This is a valid question.  There is no doubt that fundamental models have better 

accuracy and generalization capability, however, developing fundamental models are often 

time consuming and require expert resources. These models can sometimes be too complex 

to execute in real-time. Adopting ML methodology can help getting around these difficulties. 

 

Machine learning workflow 

Figure 1.4 shows the typical tasks involved in a machine learning project. The tasks are 

categorized into offline computations and online/real-time computations. In online 

computations, process data are parsed through the process model to provide real-time 

insights and results. Note that the models could be process input-output models, process 

monitoring models (process normal/abnormal classification), mode categorization models, or 

fault classification models.  

 

The models are built offline using historical process data. This offline exercise is performed 

once or repeated at regular intervals for model update. Brief description of the essential steps 

performed are provided below: 

• Sample and variable selection: One does not simply dump all the available historical 

data and sensor measurements into model training module. Only the portion of 

historical data that best represents the current process behavior or the behavior of 

interest is utilized. For process systems, it is common to use data over the past couple 

of years as training data. If steady-state models are being build, then data from steady-

state operation periods are used.  

 

Input variable selection warrants judicious consideration as well. While including too 

many model inputs leads to overfitting and high computational complexity, leaving out 

important variables leads to underfitting.  The basic principle is to include only those 

inputs that are known to influence the model outputs. Specific algorithms for variable 

selection are covered in Chapter 4.   
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• Data cleaning: “Garbage in, garbage out” is an age-old principle in computer 

simulations. The same holds for ML model training. Your model will be practically 

useless if training data is not ‘clean’. For example, process monitoring model won’t be 

able to detect process abnormalities accurately if it has been trained with outlier-

infested training data. Data cleaning includes, amongst others, identification and 

removal of outliers, and removal of noise effects. Detailed algorithms are covered in 

Chapter 4.  

• Model training and validation: Model training imply estimating the parameters of the 

chosen ML model, for example, the coefficients in a linear regression model. Model 

validation is employed for finding optimal values of model hyperparameters, for 

example, regularization coefficient in ridge regression. At the end of this step, the 

coveted process model is obtained. Several best practices for model training and 

validation are covered in Chapter 3. 

 

 
Figure 1.4: Steps involved in a typical ML-based methodology  

 

Distinct from the offline-online paradigm, there is another approach employed in process 

industry, especially for nonlinear and multimode processes. It is called just-in-time learning or 

lazy learning.  As shown in Figure 1.5, the model building exercise is carried out online as 

well. When new process data comes in, relevant data are fetched from the historical dataset 
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that are similar to the incoming samples based on some nearest neighborhood criterion. A 

local model is built using the fetched relevant data. The obtained model processes the 

incoming samples and is then discarded. A new local model is built when the next samples 

come in. 

 

 
Figure 1.5: Steps involved in a just-in-time learning methodology 

 

 

Types of machine learning systems  

Although there is a plethora of ML models available, all of them can be organized into three 

broad categories, namely, supervised learning, unsupervised learning, and reinforcement 

learning.  The categorization is based on the nature of model output associated with each 

sample in the training dataset. Note that there is another category, semi-supervised learning 

– this method, however, is used less often compared to the other mentioned methods. Figure 

1.6 gives a sneak peek into some of the ML algorithms and application areas corresponding 

to supervised and unsupervised learnings that we will cover in this book.  
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Figure 1.6: Classification of machine learning methods  

 

Let’s now try to understand these categories a bit more clearly. 

 

Supervised learning 

Supervised learning is used when training data includes sets of inputs and associated outputs. 

As illustrated in Figure 1.7, supervised learning models learn the input-output relationship and 

use this relationship to predict the unknown output for a new input. The outputs can be discrete 

values (for classification problems) or continuous values (for regression problems).  

 

 
Figure 1.7: Supervised learning scheme  
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Unsupervised learning 

Unsupervised learning is used when training data is not divided into inputs and outputs. The 

primary purpose is to find hidden pattern, if any, in data. An example situation is illustrated in 

Figure 1.8, where an unsupervised learning model finds prevailing structure (distinct clusters) 

in historical data and buckets them into different groups. The model can now be used to assign 

any new incoming sample into either of the groups.  Unsupervised learning is often used in 

conjunction with supervised learning. For example, in Figure 1.8, separate local models can 

be built via supervised learning for data in different clusters. As you would have guessed 

correctly, data would need to be separated into inputs and outputs before application of 

supervised learning. 

 

 
Figure 1.8: Unsupervised learning scheme 

 

Reinforcement learning (RL) 

Unlike supervised and unsupervised learning where there is one-time interaction between the 

system (environment) and model (ML agent) during training, in reinforcement learning the 

agent continuously interacts with the environment to generate training data to ‘learn’ an 

optimal strategy for accomplishing a task. The actions decided as per the learnt strategy are 

such that the long-term rewards are maximized. For example, consider a simple task of 

controlling water level in a container at a fixed height during rainy days.  

            
Figure 1.9: Reinforcement learning scheme and simple application setup 
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The RL agent takes actions to adjust the tap opening according to the current system state to 

maintain the level at some setpoint. The trivial policy of opening and closing the tap completely 

upon any level change can lead to high water level fluctuations. Therefore, during training the 

agent learns the best control policy automatically by just interacting with its environment. 

 

1.3 Machine Learning Applications in Process 

Industry 

 

Product quality control, safe work environment, optimal operations, and sustainable 

operations are the primary objectives in any industrial plant. Today, ML-based solutions are 

being utilized for all these purposes. Surrogate models are developed for online prediction of 

key quality variables and optimizing plant productivity, process monitoring and fault diagnosis 

models are developed for real-time tracking of process operating conditions, data mining is 

used for alarm management, data clustering is used for operation mode identification, and the 

list goes on. 

 

 
Figure 1.10: Use of machine learning to solve process plant objectives 

Several success stories on machine learning application in process industry are publicly 

available.  Shell2 used recurrent neural networks (RNNs) for early prediction of valve failures, 

Saudi Aramco used ML tools for alarm analytics and predictive maintenance of turbines3, a 

polymer manufacturing company used ML-based feature extractions4 for troubleshooting 

quality control issues. In recent times, there has been a proliferation in the number of 

 
2 https://www.aiche.org/conferences/aiche-spring-meeting-and-global-congress-on-process-
safety/2018/proceeding/paper/37a-digital-twins-predicting-early-onset-failures-flow-valves 
3 https://pubs.acs.org/doi/abs/10.1021/acs.iecr.8b06205 
4 https://www.yokogawa.com/at/library/resources/references/successstory-sumitomoseika-chemicals-en/ 

https://www.aiche.org/conferences/aiche-spring-meeting-and-global-congress-on-process-safety/2018/proceeding/paper/37a-digital-twins-predicting-early-onset-failures-flow-valves
https://www.aiche.org/conferences/aiche-spring-meeting-and-global-congress-on-process-safety/2018/proceeding/paper/37a-digital-twins-predicting-early-onset-failures-flow-valves
https://pubs.acs.org/doi/abs/10.1021/acs.iecr.8b06205
https://www.yokogawa.com/at/library/resources/references/successstory-sumitomoseika-chemicals-en/
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commercial data-analytics software (Aspen Mtell, IBM SPSS) or services offerings for process 

industry. This is just a testament to the growing trend of ML-driven process control and 

operations.  

 

As process data scientists, we should be proud of the fact that process industry has always 

been a pioneer in utilizing process data for plant operations. Model predictive control (MPC) 

is a classic example which uses data-based model for process control. It has been used as a 

standard supervisory controller long before Big Data and ML became the buzzwords. Partial 

least squares (PLS), a popular dimensionality reduction-based soft sensing method, has long 

been used for online product quality predictions. The new craze about machine learning has 

only imparted a renewed push to explore non-traditional applications of ML in process 

industry.  

 

Decision hierarchy levels in a process plant 

Before we look at some specific examples of ML applications for process systems, let us first 

familiarize ourselves with the typical decision-making hierarchy in a process plant. Once you 

understand this, you will be able to easily identify the avenues where ML renders itself useful 

in the world of process operations and appreciate how data science has percolated all levels 

of process decision hierarchy.  

 
Figure 1.11: Industrial process control/decision-making hierarchy. Interval ranges in 

brackets show the timescales at which corresponding decisions are made.  
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At the base level, in Figure 1.11, resides the basic regulatory control layer which primarily 

comprises of control valves; these valves are used to modulate the flow of process streams 

and indirectly the pressures and temperatures as per process requirements. These 

requirements are in turn determined by the multivariable control layer which usually consists 

of MPC and RTO (real-time optimization) modules. This layer determines the base layer 

requirements using multivariable relationships between plant variables to ensure optimal 

performance of the plant. This layer is also responsible for ensuring that plant operations 

remain safe by ensuring safety-critical variables remain within stipulated bounds. The process 

diagnostics layer, if present, ensures reliability of the process through timely fault detection 

and diagnosis. This layer may also perform the task of controller performance assessment.  

 

The production scheduling layer has models and methods to determine resource allocation 

and short-term production schedules considering external influences such as electricity prices 

or raw material price variations. Time-based or predictive equipment maintenance decisions 

may also be made in this layer. Results from this layer are communicated to the multivariable 

control layer. The top-most layer, planning and logistics, make enterprise-wide decisions. An 

enterprise operating multiple facilities use this layer to determine site-wise production targets 

based on the enterprise’s strategic goals. 

 

Application areas 

After familiarization with the process operation decision hierarchy, we are now well-equipped 

to see the broad application areas of ML in a process plant. We have already seen some of 

the application areas in Figure 1.6. In this section we will use a furnace (Figure 1.12) as an 

example system to investigate these in more details.  

 
Figure 1.12: Furnace system with catalyst-filled tubes 
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The furnace system consists of several catalyst-filled tubes suspended vertically in a natural-

gas fired furnace. Unreacted gas stream enters the tubes from the top, undergoes chemical 

reactions as they flow down the tubes and exit at the bottom. The heat from fuel combustion 

provides energy for the chemical reactions. 

 

Soft Sensing 

Soft sensors, also called virtual sensors or inferential sensors, are mathematical models used 

to estimate the values of unknown process variables using available measurements. Soft 

sensor models can be first principles-based or data-based and are employed when physical 

sensors are very costly or real-time measurements are not possible (in case of composition 

measurements).  

 

Usage of data-based soft sensors are popular where process systems are too complex to 

build mechanistic models, or the mechanistic models are too complex to provide required 

estimates in real-time. For example, for the furnace system, one can build a computational 

fluid dynamic (CFD) model to predict the species mole fractions in the processed gas stream 

as a function of process inputs – fuel, air, unprocessed gas. This estimate can be used by 

multivariable control layer to adjust input flows accordingly, for example, increase fuel if 

conversion is low. However, CFD models have large execution times. As an alternative, data-

based models can utilize past process data to estimate an appropriate relationship and 

provide compositions in real-time. 

 

As a process modeler, you should pay careful attention that the training data is 

sufficiently rich in information, otherwise, a poor/low-accuracy model will result. 

One way to ascertain data-richness is to check if process inputs show adequate 

variability.  

 

Partial least squares (PLS), principal component regression (PCR), support vector regression 

(SVR) are some of the popular ML method choices for estimating process quality variables. 

In recent times, artificial neural networks (ANNs) have also seen increased usage.  

 

Process Monitoring  

Process monitoring/fault detection/abnormality detection is among the most popular 

application of ML in process industry. The ML model flags an alarm when current process 

data shows inconsistency with historical behavior as estimated from historical data. These 

discrepancies could be indications of severe process faults. In the furnace system, there are 



` 

 
 

 

 

hundreds of tube temperature measurements. Unfavorable conditions like catalyst damage 

or tube leaks may induce abnormal increase in some of the temperatures. However, it is 

impractical to monitor all these temperatures manually all the time. Instead, process 

monitoring models could be built using historical data that provides early warning for 

temperature upsets so that timely corrective actions can be taken.   

 

Figure 1.13: Soft sensing methodology spectrum 

White-box/grey-box/black-box models 

For soft sensing, terms like white-box, grey-box, black-box are often used. Figure 

1.13 clarifies the difference between the terms. White-box models utilize 

fundamental mass/energy/momentum conservation laws to relate model inputs and 

outputs. Black-box methods build estimation models using only process data. Grey-

box methods combine the two approaches to generate a hybrid model.  

 

Consider our furnace system again. CFD model would be the white-box model. PLS 

model relating furnace inputs to product stream composition would fall in black-box 

model category. However, to balance the trade-off between model accuracy and 

computational expense, a hybrid model can be built. Mechanistic model of radiation 

energy transfer is the most complex part of the furnace model. One can build a 

black-box model to estimate the amount of radiation energy supplied to the tubes. 

This model can then be combined with the mechanistic model of tube to predict 

product composition.  

 

Hybrid models tend to have better extrapolation accuracies compared to black-

box models and are preferred when the amount of training data is low.  
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Principal component analysis (PCA) is the most popular method employed for process 

monitoring. PLS, independent component analysis (ICA), support vector data description 

(SVDD), self-organizing maps are some other commonly used methods. We will study all 

these methods and their applications for process monitoring in the later chapters.  

 

Fault Classification 

Once a process fault has been detected, the next challenge lies in timely identification of root-

cause of the issue or identification of the process variables that are responsible for the process 

upset. This exercise is called fault diagnosis. If historical data on past failures are available, a 

classification model could be built to determine the specific fault. 

 

For furnace system, refractory damage, tube leaks, burner malfunctions, catalyst damage can 

all cause temperature upsets. These different faults tend to impact tube temperatures 

differently; these differences are exploited by a fault classification model to identify the current 

fault. In this book, we will study how methods like ANNs, support vector machine (SVM) and 

linear discriminant analysis (LDA) can help in fault classifications. 

 

Process Optimization & Control 

Optimizing a complex system can be computationally expensive. It is not uncommon to find 

practitioners developing ML-based surrogate models from data to optimize the system offline 

or in RTO5 layer. Surrogate models are also used in MPCs for highly non-linear systems. 

Reinforcement learning models are being tried in the regulatory control layer or for adaptively 

tuning regulatory controllers6.  

 

Data Clustering & Mining   

Data clustering and mining methods are frequently used for activities like alarm management, 

operating mode characterization, pattern recognition, etc. For the furnace system, clustering 

models can be used to find the which set of tubes tend to show similar temperatures. Data 

mining models could be used to find the effect of process conditions on tube lifespan. 

 

Predictive Maintenance 

Predictive maintenance is another very popular usage of ML in process industry. Predictive 

maintenance models are built to determine the time to failure of any equipment  or detect 

 
5 Real-Time Optimization and Control of Nonlinear Processes Using Machine Learning, Zhang et. al., 
Mathematics, 2019 
6 Adaptive PID controller tuning via deep reinforcement learning, US patent 187631, 2019 
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patterns in process data that could signal an impending process failure. Detailed planned 

maintenance can be carried out if failure times are known in advance. In the furnace system, 

tube leak occurrences may be preceded by a specific pattern in temperatures of neighboring 

tubes. These patterns are identified during model training and then utilized for real-time failure 

predictions. Advance warning can help plant operators plan plant shutdown properly. 

 

Forecasting 

Uncertainty in product demands and prices of raw materials lead to poor production 

scheduling. Advanced ML forecasting models are built to determine optimal production plan 

to maximize resource utilization and minimize production costs. In furnace system, frequent 

furnace temperature swings have detrimental effect on tube lifespan. If accurate monthly 

product demand is known in advance, then the furnace can be operated at a steady state 

throughout the month while using product storage to handle momentary spikes in demand.  

 

                   Choosing the right ML algorithm 

One of the trickiest tasks in a machine learning project is selection of 

modeling algorithm.  Even experienced ML practitioners often 

recommend trial-and-error approaches. However, with experience, 

understanding of underlying details of ML algorithms, and process 

knowledge you can narrow down the trial candidates. 

Let’s take a sneak peek into the model selection process for the task of 

process monitoring. For monitoring, if the system is linear, PCA or PLS 

models should be tried first. If variables are non-gaussian distributed, 

kernel density estimation (KDE) or SVDD can be used for control-limit 

determination. For nonlinear systems, kernelized PCA/PLS, ANN, SVMs 

may be explored. SVMs are preferred when training data are limited. If 

process exhibits multiple operation mode, then mixture modeling like 

gaussian mixture model (GMM) can provide better monitoring 

performance. 

 

 

1.4 ML Solution Deployment 

 

While working on any project, you are most likely to experiment with several ML algorithms 

on your personal laptop/computer. After having done all the hard work and having decided 

the final form of your ML workflow, you might find yourself asking the following questions: 
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• Where does my ML tool reside where it can run uninterrupted? 

• How does an end-user access the results of my tool? 

 

The answer to the above questions is summarized in Figure 1.14 which shows a common 

architecture followed for deploying a Python machine learning solution from scratch within an 

enterprise network. You will install Python and transfer your tool (Python files) in a tool server 

machine (a virtual or physical machine where the ML tool would run). The tool server will be 

configured to execute the tool continuously (as a windows service) or on a schedule. During 

execution, your ML tool will fetch historical or real-time plant data and store the ML results in 

a database (MS SQL, MYSQL, etc.).  

 

 
Figure 1.14: ML solution deployment 

 

Let’s tackle the second question now. The end-users such as plant operators can access 

tool’s results via a web browser. The user interface could be either built using third-party 

visualization software (Tableau, Sisense, Power BI) or completely custom-built using front-

end web frameworks like bootstrap. If building custom website, then you will also need to 

setup a web server (using Python, .Net, etc.) which will serve the user-interface webpage 

when requested through web browser. The user interface communicates with the database 

to display appropriate data to the end-user. The web server may be configured to execute 

your tool on demand as well. The web server may be hosted on a separate machine or on the 

tool server machine itself.  

 

That is all it takes to deploy a ML solution in a production environment. If all this IT stuff has 

overwhelmed you, don’t worry! It is simpler than it seems and in Chapter 14 we will build and 

deploy an end-to-end solution following this architecture.   
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1.5 The Future of Process Data Science 

 

It is not an exaggeration to say that this is a wonderful time to be a process data scientist. 

Process industry is witnessing higher and higher product demands due to increasing 

population and growing lifestyle globally, but there is also a push to run production facilities 

more efficiently and sustainably. Consequently, adoption of Industry 4.0, which mandates 

utilizing process data for process improvements all along the production chain, is on the rise. 

There is palpable interest among process industry executives to implement ML-based 

solutions and the responsibility to show that the ML hype is true has fallen on the shoulders 

of process data scientists.  

 

It’s a foregone conclusion that ML is a powerful tool for PSE. Process data hold tremendous 

power if they are put to use in the right way. However, blind application of ML often leads to 

discouraging results. As a process data scientist with expert process knowledge and ML skills, 

you are in a unique position to combine process systems knowledge and power of ML to 

unleash the true potentials of data science in process industry. Let’s cheer to your bright 

career prospects as a process data scientist and continue our journey to now learn the 

intricate details of ML algorithms. 

 

Summary 

 

In this chapter we tried to get a conceptual understanding of where ML fits in the world of 

process industry. We looked at the different types of machine learning workflows and 

methodologies. We also explored some application areas in process industry where ML has 

proved useful.  We hope that you got the chapter’s overarching message that process data 

science has already proven to be an indispensable tool in process operations to turn data into 

knowledge and support effective decision making. In the next chapter we will take the first 

step and learn about the environment you will use to execute your Python scripts containing 

ML code.  
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Part 2 

Classical Machine Learning Methods 
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Chapter 5 
Dimension Reduction and Latent Variable 

Methods (Part 1)  

 
It is not uncommon to have hundreds of process relevant variables being measured at 

manufacturing facilities.  If you are looking to build a machine learning model using these 

process variables, then the high dimensionality (number of model variables) will present you 

several unique challenges related to algorithmic issues (due to collinearity among variables), 

difficulty in visualizing data, large computational costs, and slow model training. However, this 

problem, referred to as the curse of dimensionality, should not dampen your spirits!  

Conservation laws such as mass balances, thermodynamics constraints, enforced product 

specifications, and other operational restrictions induce correlations among the process 

variables and make it appear as if the measured variables are all derived from a small number 

of hidden (un-measured) variables. Latent variable-based methods reduce process 

dimensionality by finding these hidden latent variables.  

 

PCA and PLS are among the most popular latent variable-based statistical tools and have 

been used successfully in several process monitoring and soft sensing applications. This 

chapter provides a comprehensive exposition of the PCA and PLS techniques and teaches 

you how to apply them on process data. Specifically, the following topics are covered 

• Introduction to PCA and PLS  

• Process modeling and monitoring via PCA and PLS 

• Fault diagnosis for root cause analysis 

• Nonlinear and dynamic variants of linear PCA and PLS  

 

 

 
  



` 

 
 

5.1 PCA: An Introduction 

 

Principal component analysis (PCA) is a multivariate technique that transforms a high-

dimensional set of correlated variables into a low-dimensional set of uncorrelated (latent) 

variables with minimum loss of information. Consider the 3-dimensional data in figure 5.1. It 

is apparent that although the data is three dimensional, the data-points mostly lie along a 2-

D plane; and even in this plane, the spread is much higher along a particular direction.  PCA 

converts the original (x,y,z) space into a 2-D principal component (PC) space where the 1st 

PC (PC1) corresponds to the direction of maximum spread/variance in data and the 2nd PC 

(PC2) corresponds to the direction with highest variance among all directions orthogonal to 

1st PC. Depending upon modeling requirements, even the 2nd PC may be discarded, 

essentially obtaining a 1-D data while losing out some information. Also, as we will see soon, 

it is straightforward to recover original data from data in PC space.  

 

 

Figure 5.1: PCA illustration 

 

In ML world, it is common to find application of classification and clustering techniques in the 

PC space. In process industry, process modeling (via principal component regression (PCR)) 

and monitoring are common application of PCA7. In PCR, the process outputs are regressed 

onto the principal component values of the input data. By doing so, the problem of ill-

conditioning frequently encountered in classical multiple linear regression (MLR) due to high 

input space dimensionality and high degree of correlation among input variables is 

circumvented. PCA is also frequently utilized for process visualization. For many applications, 

two or three PCs are adequate for capturing most of the variability in process data and 

therefore, the compressed process data can be visualized with a single plot. Plant operators 

and engineers use this single plot to find past and current patterns in process data. 

 
7 The popularity of latent-variable techniques for process control and monitoring arose from the pioneering work by John 
McGregor at McMaster University.   
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Mathematical background 

Consider a data matrix 𝑿 ∈ ℝ𝑁×𝑚 consisting of N samples of m input variables where each 

row represents a data-point in the original measurement space. It is assumed that each 

column is normalized to zero mean and unit variance. Let 𝒗 ∈ ℝ𝑚 represent the ‘loading’ 

vector that projects data-points along PC1 and can be found by solving the following 

optimization problem 

 

It is apparent that eq. 1 is trying to maximize the variance of the projected data-points along 

PC1. Loading vectors for other PCs are found by solving the same problem with the added 

constraint of orthogonality to previously computed loading vectors.  Alternatively, loading 

vectors can also be computed from eigenvalue decomposition of covariance matrix (S) of X 

 
1

𝑁−1
𝑿𝑻𝐗 = 𝑺 = 𝑽𝜦𝑽𝑻      eq.  2 

Above is the form you will find more commonly in PCA literature. The columns of eigenvector 

matrix 𝑽 ∈ ℝ𝑚×𝑚 are the loading vectors that we need. The diagonal eigenvalue matrix 𝜦 
equals diag{𝜆1, 𝜆2, . . . , 𝜆𝑚}, where 𝜆1 ≥  𝜆2  ≥  ⋯  ≥  𝜆𝑚 are the eigenvalues. Infact, 𝜆𝑗 is equal 

to the variance along the jth PC. If there is significant correlation in original data, only the first 

few eigenvalues will be significant. Let’s assume that k PCs are retained, then, the first k 

columns of 𝑽 (which corresponds to the first k 𝜆𝑠) are taken to form the loading matrix 𝑷 ∈

ℝ𝑚×k. Transformed data in the PC space can now be obtained  

 

The m dimensional ith row of X has been transformed into k (< m) dimensional ith row of T. 

𝑻 ∈ ℝ𝑁×𝑘 is called score matrix and the jth column of T (tj) contains the (score) values along 

the jth PC. The scores can be projected back to the original measurement space as follows 

𝑿̂  =  𝑻𝑷𝑇      eq.  4 

Note that because we discarded the loading vectors corresponding to insignificant 𝜆𝑠,  𝑿̂  ≠

 𝑿. The difference 𝑬 = 𝑿 − 𝑿̂ is referred to as residual matrix as each row is the residual or 

error vector for a data-point. Overall, the PC space captures the systematic trends in process 

data and the residual space primarily describe the noise in data.  

  max
𝒗≠0

ሺ𝑿𝒗ሻT𝑿𝒗

𝒗𝑇𝒗
                                     eq.  1 

𝒕𝑗 = 𝑿𝒑𝑗  𝒐𝒓  𝑻 =  𝑿𝑷      eq.  3 
Projected values 

along jth PC 
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Dimensionality reduction for Polymer Manufacturing Process 

Let us now see the powerful dimensionality reduction capability of PCA in action. We will use 

data from a polymer manufacturing facility. The dataset contains 33 variables and 92 hourly 

samples (Figure 5.2).   

 

Figure 5.2: Process data from a polymer manufacturing plant. Each colored curve 

corresponds to a process variable 

For this dataset, it is reported that the process started behaving abnormally around sample 

70 and eventually had to be shut down. Therefore, we use samples 1 to 69 for training the 

PCA model using the code below. The rest of the data will be utilized for process monitoring 

illustration later. 

# import requisite libraries 
import numpy as np 
import pandas as pd 
from sklearn.preprocessing import StandardScaler 
from sklearn.decomposition import PCA 
 
# fetch data and separate training data 
data = pd.read_excel('proc1a.xls', skiprows = 1, usecols = 'C:AI') 
data_train = data.iloc[0:69,] 
 
# normalize data 
scaler = StandardScaler() 
data_train_normal = scaler.fit_transform(data_train) 
 
# PCA 
pca = PCA() 
score_train = pca.fit_transform(data_train_normal) 



` 

 
 

After training the PCA model,  loading vectors/principal components can be accessed from 

transpose of the components_ attribute of pca model. Note that we have not accomplished 

any dimensionality reduction yet. PCA has simply provided us an uncorrelated dataset in 

score_train. To confirm this, we can compute the correlation coefficients among the columns 

of score_train. Only the diagonal values are 1 while the rest of the coefficients are 0! 

 
# confirm no correlation 
corr_coef = np.corrcoef(score_train, rowvar = False) 
>>> print('Correlation matrix: \n', corr_coef[0:3,0:3]) # printing only a portion 
 
Correlation matrix:  
 [[ 1.00000000e+00  8.24652750e-16 -1.88830953e-16] 
 [ 8.24652750e-16  1.00000000e+00  2.36966153e-16] 
 [-1.88830953e-16  2.36966153e-16  1.00000000e+00]] 

For dimensionality reduction we will need to study the variance along each PC. Note that the 

sum of variance along the m PCs equals the sum of variance along the m original dimensions. 

Therefore, the variance along each PC is also called explained variance. The attribute 

explained_variance_ratio gives the fraction of variance explained by each PC and Figure 

5.3 clearly shows that not all 33 components are needed to capture all the information in data. 

Most of the information is captured in the first few PCs itself. 

# visualize explained variance 
import matplotlib.pyplot as plt 
 
explained_variance = 100*pca.explained_variance_ratio_ # in percentage 
cum_explained_variance = np.cumsum(explained_variance) # cumulative % variance explained 
 
plt.figure() 
plt.plot(cum_explained_variance, 'r+', label = 'cumulative % variance explained') 
plt.plot(explained_variance, 'b+', label = 'variance explained by each PC') 
plt.ylabel('Explained variance (in %)’), plt.xlabel('Principal component number'), plt.legend() 

  
Figure 5.3: Variance explained by principal components 
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A popular approach for determining the number of PCs to retain is to select the number of 

PCs that cumulatively capture atleast 90% (or 95%) of the variance.  The captured variance 

threshold should be guided by the expected level of noise or non-systematic variation that you 

do not expect to be captured. Alternative methods include cross-validation, scree tests, AIC 

criterion, etc. However, none of these methods are universally best in all the situations.  

# decide # of PCs to retain and compute reduced data in PC space 
n_comp = np.argmax(cum_explained_variance >= 90) + 1  
score_train_reduced = score_train[:,0:n_comp] 
 
>>> print(‘Number of PCs cumulatively explaining atleast 90% variance: ‘, n_comp) 
 
Number of PCs cumulatively explaining atleast 90% variance: 13 

Thus, we have achieved ~60% reduction in dimensionality (from 33 to 13) by sacrificing just 

10% of the information. To confirm that only about 10% of the original information has been 

lost, we will reconstruct the original normalized data from the scores. Figure 5.4 provides a 

visual confirmation as well where it is apparent that the systematic trends in variables have 

been reconstructed while noisy fluctuations have been removed. 

# confirm that only about 10% of original information is lost 
from sklearn.metrics import r2_score 
 
V_matrix = pca.components_.T  
P_matrix = V_matrix[:,0:n_comp]  
 
data_train_normal_reconstruct = np.dot(score_train_reduced, P_matrix.T) 
R2_score = r2_score(data_train_normal, data_train_normal_reconstruct) 
 
>>> print(‘% information lost = ‘, 100*(1-R2_score)) 
 
% information lost = 9.0469 

 

 
Figure 5.4: Comparison of measured and reconstructed values for a few variables 
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The 90% threshold could also have been specified during model training itself through the 

n_components parameter: pca = PCA(n_components = 0.9). In this case the insignificant PCs 

are not computed and the score_train_reduced matrix can be computed from the model using 

the inverse_transform method.  

# alternative approach 
pca = PCA(n_components = 0.9) 
score_train_reduced = pca.fit_transform(data_train_normal) 
 
data_train_normal_reconstruct = pca.inverse_transform(score_train_reduced) 
R2_score = r2_score(data_train_normal, data_train_normal_reconstruct)  
 
>>> print('% information lost = ', 100*(1-R2_score)) 
 
% information lost = 9.0469 

 

5.2 Process Monitoring via PCA for Polymer 

Manufacturing Process 

 
In Figure 5.2, we saw that it was not easy to infer process abnormality after 69th sample by 

simply looking at the combined time-series plot of all the available variables. Individual 

variable plot may provide better clues, but continuously monitoring all the 33 plots of individual 

variables is not a convenient task. 

 

 
Figure 5.5: PCA-based process monitoring workflow 
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PCA makes the monitoring task easy by summarizing the state of any complex multivariate 

process into two simple indicators or monitoring indices as shown in Figure 5.5.  During model 

training, statistical thresholds are determined for the indices and for a new data-point, the new 

indices’ values are compared against the thresholds. If any of the two thresholds are violated, 

then presence of abnormal process conditions is confirmed. 

 
 

Process monitoring/fault detection indices 
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Chapter 13 
Reinforcement Learning  

 
The ML algorithms we have learnt till now rely upon supply of all modeling-relevant 

input/output data prior to model training. In contrast, reinforcement training (RL) takes ML a 

step further and is designed to collect the required training data by itself through interactions 

with the physical system that it is trying to learn about. Through trial-and-error, an RL model 

learns what actions to take to accomplish any given task. During training, actions that result 

in favorable results/rewards get reinforced and after multiple interactions, the model 

eventually learns an optimal action plan/policy! Sounds impressive, right? 

 

RL mimics how we, humans, learn things (such as riding a cycle) through trial & error and 

environment interactions. This concept opens up a plethora of potential RL applications. You 

have probably already heard or seen some of the remarkable feats achieved by RL models 

such as computers playing games better than the best human players or humanoid robots 

learning how to run, etc. In this chapter, we will focus on process industry-related applications 

of RL, specifically for process control. 

 

RL is a very broad and constantly evolving field. There are a lot of RL-specific terminology 

and concepts. We will declutter the world of RL in this chapter, and you will learn how to setup 

and solve an RL problem. Specifically, this chapter covers the following topics 

• Introduction to RL and RL agents as process controllers  

• Introduction to Q-learning, deep RL, and Actor-Critic architecture 

• Introduction to DDPG algorithm for handling process industry-relevant problems  

• Tank level control using an RL agent 
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13.1 Reinforcement Learning: An Introduction 

 

RL is the branch of ML wherein an agent repeatedly interacts with its environment to learn the 

best way to accomplish a task or the optimal action policy. Figure 13.1 shows the basic setup 

of reinforcement learning. As shown, the RL agent receives information about the current 

state (st) of the environment based on which an action (at) is decided (as per agent’s action 

policy). As a result of the action, the environment moves to a new state (st+1) and generates 

a scalar reward (rt+1) indicating how good was the taken action. Before the agent takes another 

action, the learning algorithm uses the information (st, at, rt+1, st+1) to improve its policy and 

then the cycle continues. Eventually, an optimal policy is obtained that maps environment 

states to optimal actions such that the total rewards earned till task completion is maximized. 

Once trained, the learning process can be stopped, and the policy function can be deployed.  

 

 
Figure 13.1: Reinforcement learning setup depicting an agent’s interactions with its 

environment 

 

A simple real-life analogy could be the task of finding the optimal driving route from your office 

to home in a new town. Here, you are the agent and environment would comprise of your car, 

city’s roads and highways network, traffic, weather, your geospatial location, and basically 

everything excluding you. The total reward to maximize could be the negative of the time 

taken to reach home (less driving time is better). During driving, depending on the 

environment state, you would take decisions on whether to take any highway exit or make 

any turn or not. Assuming no internet (and google maps!), being new in town, you would not 

know if taking those exits or turns will help you reach home faster and therefore you will 

explore different possible routes. After several trials, you would gain a good understanding of 

the town and eventually would be able to take the most optimal action for any given 

environment state at any point during driving. RL follows the same methodology to find the 

optimal mapping using some systematic (and very smart) learning algorithms. 
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RL for process control 

The RL framework of observing an environment’s current state and deciding upon 

corresponding optimal actions fits quite naturally to the setup of process controllers in process 

industry. You might already know that these controllers are tasked with keeping process 

operations optimal by keeping critical process variables (product purity, fluid level, 

temperatures, etc.) at optimal values through adjustments in manipulated variables (stream 

flows, valve openings, etc.).  Figure 13.2 shows the typical setup of a process controller and 

the division of this setup into agent/environment framework. Rewards are designed as some 

suitable combination of reference signal, environment state, and controller action. 

 

 
Figure 13.2: Process control system in RL framework 

 

In process industry, although PID and MPC controllers are well-established, their 

shortcomings are well-known. While PID controllers perform unsatisfactorily for complex 

nonlinear systems, MPCs solve optimization problems using process models which makes 

online action computation infeasible for large-scale nonlinear systems. Moreover, both these 

controllers suffer performance degradation issues (due to changing process conditions, 

process drift) over time, necessitating regular maintenance. Controller maintenance entails 

re-identification of process models which can be time and resource intensive and may require 

interference to normal plant operations for training data collection.  

 

Given the aforementioned issues with the current state-of-the-art for the process controllers 

and the recent successes of RL, interest in leveraging RL technology for process control has 

been reignited. Several recent studies8 have demonstrated how RL-based controllers can 

provide superior performance. Not requiring online optimization (because optimal action 

policy is pre-computed), easy adaptation of action policy under changing environment by 

 
8 Cassol et. Al., Reinforcement learning applied to process control: A Van der Vusse reactor case study, Computer Aided 
Chemical Engineering, 2018 
Rajesh Siraskar, Reinforcement learning for control of valves, Machine Learning with Applications, 2021 
Ma et. Al., Continuous control of a polymerization system with deep reinforcement learning, Journal of Process Control, 
2019 
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continued learning with new process data are some characteristics that make RM-based 

controllers very promising. 

 

You may be slightly concerned about training an RL agent in the real plant 

environment because the generated actions in early stages of training can 

be ‘very bad’ and even unsafe. Moreover, for complex system, thousands 

of interactions may be required to reach even a reasonably good policy; 

plant managers will certainly never agree to this! These are valid concerns 

and therefore, the common practice is to use a sufficiently accurate model 

of the plant and train RL agent offline in a simulated environment. Once 

offline learning is complete, the learning process can be turned off and RL 

agent deployed in real plant. There are, however, a few good reasons to 

keep learning on (continually or sporadically) post-deployment. First, your 

plant model will probably not be 100% accurate. Therefore, the RL agent 

may use some online interactions to fine-tune its policy. Second, as alluded 

to before, the plant behavior may change over time and the agent will need 

to tweak its policy to re-adjust to changes in its environment. 

This discussion also brings us to the point of model-free vs model-based 

RL. Model-free RL doesn’t use any environment/plant model during training 

and learns its policy based solely on its interactions with real environment. 

Model-based RL, on the other hand, uses a model either for simulating the 

environment or assisting the learning algorithm. 

 

13.2 RL Terminology & Mathematical Concepts 

 

We have showered enough praises on RL. Let’s now get down to understanding how RL 

actually works. For this, we will first learn some RL terminology and concepts. A quick 

disclaimer here that some of these new concepts may seem ‘abstract’ and not immediately 

useful. But, as you read through this chapter, we promise that all dots will connect and their 

utility will become ‘obvious’. 

 

Environment and Markov decision process  

While informally an environment is anything that an RL agent interacts with, in a formal setting, 

it is represented as a Markov decision process (MDP). A MDP is named such because it 

exhibits Markov property, i.e., the (probability of) transition from state st to st+1 depend only 
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on the most recent state (st) and action (at). Such memoryless characteristic is important in 

RL because it allows the agent to only consider the current state when deciding the next 

optimal action and not worry about what actions were previously taken to reach st.  

 
Figure 13.3: Transition in an MDP depend only on current state and action 

In an MDP, selection of features that completely characterize the state of the environment 

and enable the agent to act on its basis becomes crucial. For example, consider the following 

problem of controlling the liquid level in a tank 

 

Here, l, lsp, and the rate of change of l could be used to define the environment state. lsp  can 

also be substituted with l - lsp as an alternative formulation. Depending on your problem 

formulation, data from the past may also be included in the state vector to facilitate the agent’s 

decision making. 
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Chapter 14 
Process Monitoring Web Application 

 
You have done all the hard work to obtain a ML model that meets performance criteria and 

now it’s time to deliver the solution / model to its end-users who will be using the model’s 

results on a regular basis. But how do you do it? If the end-users are non-technical (from data-

science perspective) like plant operators, you cannot ask them to have their own Python 

installation to run the ML model. Under such circumstances, deployment over web is a good 

and frequently employed solution for delivering ML results.   

 

For web deployment, Python provides several frameworks (like Django, Flask, CherryPy) for 

developing simple to complex web application fast. Very often, all you may want is a quick 

prototype that allows you to collect user feedback. Keeping this in mind, we will show you how 

to build a light-weight web application from scratch and demonstrate how easy it is to do so. 

Specifically, we will build a process monitoring tool that provides 24 X 7 fault detection & 

diagnosis (FDD) results to plant operators over web. During the course of building this 

solution, we will learn the following topics  

• Deploying Python applications using CherryPy’s web server  

• Embedding ML models into a web application 

• Saving ML models for later reuse 

• Building front-end user interfaces using HTML, CSS, Javascript  
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14.1 Process Monitoring Web App: Introduction  

 

Figure 14.1 shows the user interface that we will build in this chapter to display the results in 

real-time from a process monitoring ML model. The user interface is to be accessed via a web 

browser and provides two crucial information to the plant operators. First, the fault detection 

component communicates to the operators the state of the process and alerts them if any 

process abnormality is detected. Second, the fault diagnosis component identifies the faulty 

variables responsible for process abnormality. The monitoring model will be built using PCA 

and the methodology introduced in Chapter 5 will be employed for FDD. The process system 

is the same as that in Chapter 5, i.e., the polymer processing plant with 33 variables.  

 

 
Figure 14.1: Process monitoring web app user interface 

 

A web application primarily has 2 main parts: front-end and back-end. Front-end (or client-

side) is the part that end-users see and interact with directly through web browsers. The back-

end works behind the scenes to deliver information to the browsers. When a user enters your 

website’s URL in browser, a request is sent to the back-end which parses this request, 

processes it, and sends back a response which is displayed on the front-end. Illustration below 

shows the data transmission scheme that we will employ 
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By the process data scientists, for the process data scientists, of process data science 

This book provides an application-focused exposition of modern ML tools that have 

proven useful in process industry and hands-on illustrations on how to develop ML 

solutions for process monitoring, predictive maintenance, fault diagnosis, inferential 

modeling, dimensionality reduction, and process control. This book considers unique 

characteristics of industrial process data and uses real data from industrial systems 

for illustrations. With the focus on practical implementation and minimal programming 

or ML prerequisites, the book covers the gap in available ML resources for industrial 

practitioners. The authors of this book have drawn from their years of experience in 

developing data-driven industrial solutions to provide a guided tour along the wide 

range of available ML methods and declutter the world of machine learning. 

The following topics are broadly covered: 

• Fundamentals of machine learning workflow 

• Practical methodologies for pre-processing industrial data 

• Classical ML methods and their applications for process monitoring, fault 

diagnosis, and soft sensing 

• Deep learning and its application for predictive maintenance 

• Reinforcement learning and its application for process control 

• Deployment of ML solution over web 
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