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No one can steal it, no king can snatch it, 

It cannot be divided among the brothers and it’s not heavy to carry, 

As you consume or spend, it increases; as you share, it expands, 

The wealth of knowledge is the most precious wealth you can have. 

- A popular Sanskrit shloka 
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Note to the readers 
 

Jupyter notebooks and Spyder scripts with complete code implementations are available for 

download at https://github.com/ML-PSE/Machine_Learning_for_DPS. Code updates when 

necessary, will be made and updated on the GitHub repository. Updates to the book’s text 

material will be available on Leanpub (www.leanpub.com) and Google Play 

(https://play.google.com/store/books).  We would greatly appreciate any information about 

any corrections and/or typos in the book. 
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Series Introduction 
 

In the 21st century, data science has become an integral part of the work culture at every 

manufacturing industry and process industry is no exception to this modern phenomenon. 

From predictive maintenance to process monitoring, fault diagnosis to advanced process 

control, machine learning-based solutions are being used to achieve higher process reliability 

and efficiency. However, few books are available that adequately cater to the needs of 

budding process data scientists. The scant available resources include: 1) generic data 

science books that fail to account for the specific characteristics and needs of process plants 

2) process domain-specific books with rigorous and verbose treatment of underlying 

mathematical details that become too theoretical for industrial practitioners. Understandably, 

this leaves a lot to be desired. Books are sought that have process systems in the backdrop, 

stress application aspects, and provide a guided tour of ML techniques that have proven 

useful in process industry. This series ‘Machine Learning for Process Industry’ addresses 

this gap to reduce the barrier-to-entry for those new to process data science. 

 

The first book of the series ‘Machine Learning in Python for Process Systems 

Engineering’ covers the basic foundations of machine learning and provides an overview of 

broad spectrum of ML methods primarily suited for static systems. Step-by-step guidance on 

building ML solutions for process monitoring, soft sensing, predictive maintenance, etc. are 

provided using real process datasets. Aspects relevant to process systems such as modeling 

correlated variables via PCA/PLS, handling outliers in noisy multidimensional dataset, 

controlling processes using reinforcement learning, etc. are covered. This second book of 

the series is focused on dynamic systems and provides a guided tour along the wide range 

of available dynamic modeling choices. Emphasis is paid to both the classical methods (ARX, 

CVA, ARMAX, OE, etc.) and modern neural network methods. Applications on time series 

analysis, noise modeling, system identification, and process fault detection are illustrated 

with examples. Future books of the series will continue to focus on other aspects and needs 

of process industry. It is hoped that these books can help process data scientists find 

innovative ML solutions to the real-world problems faced by the process industry. 

 

Books of the series will be useful to practicing process engineers looking to ‘pick up’ machine 

learning as well as data scientists looking to understand the needs and characteristics of 

process systems. With the focus on practical guidelines and real industrial case studies, we 

hope that these books lead to wider spread of data science in the process industry.  
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                        Book 1                                                                     Book 3 

  

  



` 

 

Preface 
 

Model predictive control (MPC) and real-time optimization (RTO) are among the most critical 

technologies that drive the process industry. Any experienced process engineer would vouch 

that the success of MPCs and RTOs depends heavily on the accuracy of the underlying 

process models. Similarly, the key requirement for other important process technologies like 

dynamic data reconciliation, process monitoring, etc. is availability of accurate process 

models. Modeling efforts during commissioning of these tools can easily consume up to 90% 

of the project cost and time. Modern data revolution, whereby abundant amount of process 

data are easily available, and practical difficulties in building high-fidelity first-principles 

dynamic models for complex industrial processes have popularized the usage of empirical 

data-driven/machine learning (ML) models. Building dynamic models using process data is 

called system identification (SysID) and it’s a very mature field with extensive literature. 

However, it is also very easy for a process data scientist (PDS) new to this field to get 

overwhelmed with the SysID mathematics and ‘drowned’ in the sea of SysID terminology. 

Several noteworthy ML books have been written on time-series analysis; however, in process 

industry, input-output models are of greater import. Unfortunately, there aren’t many books 

that cater to the needs of modern PDSs interested in dynamic process modeling (DPM) 

without weighing them down with too much mathematical details and therein lies our 

motivation for authoring this book: specifically, a reader-friendly and easy to understand book 

that provides a comprehensive coverage of ML techniques that have proven useful for 

building dynamic process models with focus on practical implementations.    

 

It would be clear to you by now that this book is designed to teach working process engineers 

and budding PDSs about DPM. While doing so, this book attempts to avoid a pitfall that 

several generic ML books fall into: overemphasis on ‘modern’ and complex ML techniques 

such as artificial neural networks (ANNs) and undertreatment of classical DPM methods. 

Classical  techniques like FIR and ARX still dominate the dynamic modeling solutions offered 

by commercial vendors of industrial solutions and are no less ‘machine-learning’ than the 

ANNs. These two along with other classical techniques (such as OE, ARIMAX, CVA) predate 

the ANN-craze era and have stood the test of time in providing equal (if not superior) 

performance compared to ANNs. Correspondingly, along with modern ML techniques like 

RNNs, considerable portion of the book is devoted to classical dynamic models with the 

emphasis on understanding the implications of modeling decisions such as the impact of 

implicit noise model assumption with ARX model, the implication of differencing data, etc.  
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Guided by our own experience from building process models for varied industrial applications 

over the past several years, this book covers a curated set of ML techniques that have proven 

useful for DPM. The broad objectives of the book can be summarized as follows: 

• reduce barrier-to-entry for those new to the field of SysID 

• provide working-level knowledge of SysID techniques to the readers 

• enable readers to make judicious selection of a SysID technique appropriate for their 

problems through intuitive understanding of the advantages and drawbacks of 

different methods 

• provide step-by-step guidance for developing tools for soft sensing, process 

monitoring, predictive maintenance, etc. using SysID methods 

 

This book adopts a tutorial-style approach. The focus is on guidelines and practical 

illustrations with a delicate balance between theory and conceptual insights. Hands-on-

learning is emphasized and therefore detailed code examples with industrial-scale datasets 

are provided to concretize the implementation details. A deliberate attempt is made to not 

weigh readers down with mathematical details, but rather use it as a vehicle for better 

conceptual understanding. Complete code implementations have been provided in the 

GitHub repository. Although most of the existing literature on SysID use MATLAB as the 

programming environment, we have adopted Python in this book due to its immense 

popularity among the broad ML community. Several Python libraries are now available which 

makes DPM using Python convenient.  

 

We are quite confident that this text will enable its readers to build dynamic models for 

challenging problems with confidence. We wish them the best of luck in their career. 

 

Who should read this book 

The application-oriented approach in this book is meant to give a quick and comprehensive 

coverage of dynamic modeling methodologies in a coherent, reader-friendly, and easy-to-

understand manner. The following categories of readers will find the book useful: 

 

1) Data scientists new to the field of system identification 

2) Regular users of commercial process modeling software looking to obtain a deeper 

understanding of the underlying concepts 

3) Practicing process data scientists looking for guidance for developing process modeling 

and monitoring solutions for dynamic systems 

4) Process engineers or process engineering students making their entry into the world of 

data science 



` 

 

 

Pre-requisites 

No prior experience with machine learning or Python is needed. Undergraduate-level 

knowledge of basic linear algebra and calculus is assumed.  

 

Book organization 

Under the broad theme of ML for process systems engineering, this book is an extension of 

the first book of the series (which dealt with fundamentals of ML and its varied applications 

in process industry); however, it can also be used as a standalone text. To give due treatment 

to various aspects of SysID, the book has been divided into three parts. Part 1 of the book 

provides a perspective on the importance of ML for dynamic process modeling and lays down 

the basic foundations of ML-DPM (machine learning for dynamic process modeling). Part 2 

provides in-detail presentation of classical ML techniques and has been written keeping in 

mind the different modeling requirements and process characteristics that determine a 

model’s suitability for a problem at hand.  These include, amongst others, presence of 

multiple correlated outputs, process nonlinearity, need for low model bias, need to model 

disturbance signal accurately, etc. Part 3 is focused on artificial neural networks and deep 

learning. While deep learning is the current buzzword in ML community, we would like to 

caution the reader against the temptation to deploy a deep learning model for every problem 

at hand. For example, the models covered in Part 2 still dominate the portfolio of models 

used in industrial controllers and can often provide comparable (or even superior) 

performance compared to ANNs with relatively less hassle. 

 

Symbol notation 

The following notation has been adopted in the book for representing different types of 

variables: 

- lower-case letters refer to vectors (𝑥 ∈ ℝ𝑚×1) and upper-case letters denote matrices 

(𝑋 ∈ ℝ𝑛×𝑚) 

- individual element of a vector and a matrix are denoted as 𝑥𝑗 and 𝑥𝑖𝑗, respectively. 

- any ith vector in a dataset gets represented as subscripted lower-case letter (e.g., 𝑥𝑖 ∈

ℝ𝑚×1). Its distinction from an individual element 𝑥𝑗 would be clear from the 

corresponding context. 
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Installing Required Packages 

In this book, SIPPY package (https://github.com/CPCLAB-UNIPI/SIPPY) is used for classical 

dynamic modeling of input-output systems. Below are a few remarks regarding the 

installation of the package 

▪ The package code can be downloaded from its GitHub repository. You may put the 

‘sippy’ folder provided in the package’s distribution in your working directory to use the 

provided models 

▪ To run the code provided in this book, Slycot package is not required 

▪ Control package’s version should be < 0.9 (https://github.com/CPCLAB-

UNIPI/SIPPY/issues/48) 
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Part 1 

Introduction & Fundamentals 



 
 
 

 

 

Chapter 1 
Machine Learning and Dynamic Process 

Modeling: An Introduction 

 
rocess industry operations are dynamic in nature. In complex process plants such as 

oil refineries, 1000s of process measurements may be recorded every second to 

capture crucial process trends. Plant engineers often employ dynamic process models 

to predict future values of process variables in applications such as process control, process 

monitoring, etc. Machine learning (ML) provides a convenient mechanism to bring together 

the dynamic process modeling (DPM) needs and the large data resources available in modern 

process plants.  

 

This chapter provides an overview of what ML has to offer for DPM. This chapter also 

addresses a dichotomy between ML community and DPM community. While the former 

generally tends to claim that ML has been reduced to mere execution of ‘model-fitting’ actions, 

the later vouches for the need of ‘experts’ to build ‘successful’ models. We will attempt to 

reconcile these two differing viewpoints.  

 

Overall, this chapter provides a whirlwind tour of how the power of machine learning is  

harnessed for dynamic process modeling. Specifically, the following topics are covered 

• Introduction to dynamic process modeling and the need for machine learning 

• Typical workflow in a ML-based DPM (ML-DPM) project 

• Taxonomy of popular ML-DPM methods and models 

• Applications of DPM in process industry 

 

Let’s now tighten our seat-belts as we embark upon this exciting journey of de-mystifying 

machine learning for dynamic process modeling. 

P 
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1.1 Process Systems Engineering, Dynamic 

Process Modeling, and Machine Learning 

 

Process industry is a parent term used to refer to industries like petrochemical, chemical, 

power, paper, cement, pharmaceutical, etc. These industries use processing plants to 

manufacture intermediate or final consumer products. As emphasized in Figure 1.1, the prime 

concerns of the management of these plants include, amongst others, optimal design and 

operations, high reliability through proactive process monitoring, quality control, and data 

reconciliation. All these tasks fall under the ambit of process systems engineering (PSE). 

 

 
Figure 1.1: Overview of industries that constitute process industry and the tasks process 

systems engineers perform   

 

The common theme among the PSE tasks is that they all rely on reliable dynamic 

mathematical process models that can accurately predict the future state of the process using 

current and past process measurements. Therefore, DPM is one of the defining skills of 

process systems engineers. Process industry has historically utilized both first 

principles/phenomenological and empirical/data-based models for DPM. While the former 

models provide higher fidelity, the later models are easier to build for complex systems. The 

immense rise in popularity of machine learning/data science in recent years and exponential 

increase in sensor measurements collected at plants have led to renewed interest in ML-

based DPM. Several classical and ‘modern’ ML methods for DPM are at a process data 

scientist’s disposal. The rest of the book will take you on a whirlwind tour of these methods. 

Let’s now jump straight into the nitty-gritty of ML-DPM.  
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Components of a dynamic process model 

In the context of DPM, there are three types of variables/signals in a process system as shown 

in Figure 1.2. The measured signals that we desire to predict are termed outputs while the 

measured signals that can be manipulated to influence the outputs are called inputs. In 

industrial processes, these outputs are seldom solely influenced or completely explained by 

inputs. This unexplained component is attributed to the noise signals which can manifest as 

measurement noise or process noise (unmeasured disturbances or unmeasured signals that 

impact the system are often the cause of process noise). In the pH neutralization process 

example shown below, process noise corresponds to unmeasured fluctuations in the 

wastewater acidity and/or flow which causes disturbances in the process output. 

 

  
Figure 1.2: (a) Process system (and its dynamic model) with input, output, and noise signals (b) A pH 

neutralization process broken down into its dynamic components  

 

The impact of measurement and process noise can be clubbed together and explained via a 

stochastic model as shown in the figure above. The resulting disturbance signal summarizes 

all the uncertain characteristics of the process. The stochastic and deterministic models can 

be estimated simultaneously as well as separately.  

 

In the engineering community, the task of building mathematical models of a 

dynamic system using measured data is called system identification (SysID). 

Additionally, the task of modeling dynamic systems without input variables is 

termed time-series analysis.    
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Dynamic modeling notation 

In this book, we will focus on time-invariant discrete-time models wherein the signals will be 

assumed to be recorded at regular sampling interval of T time units. The output y at time kT 

(k is any integer) will be denoted as y(k). System identification therefore entails finding the 

relationship between the three signals y(k), u(k), and v(k). For the pH example, a simple 

discrete-time linear model could look like the following 

                                        𝑦̂𝑝𝐻(𝑘) =  𝛼𝑦̂𝑝𝐻(𝑘 − 1) +  𝛽𝑢𝑎𝑙𝑘𝑎𝑙𝑖𝑛𝑒(𝑘 − 1)  

                                                   𝑦𝑝𝐻(𝑘) =  𝑦̂𝑝𝐻(𝑘) +  𝑣(𝑘)                                                           eq. 1 

where α and β are estimable model parameters and the disturbance variable, v(k), 

summarizes all the uncertainties. Here, the value of the output at the kth time instant is 

predicated upon the past values of both output and input, and the disturbance. In the later 

chapters, we will study how to characterize v(k) using stochastic models. 

 

We cannot emphasize enough the importance of proper handling of process 

disturbance signals. When in hurry, you may be tempted to ignore the stochastic 

component. However, doing so would only be inviting disappointment as you 

may end up with biased deterministic models with unsatisfactory performance. 

This interlink between stochastic and deterministic models would probably not 

be obvious to beginner PDSs. By the time you finish this book, this connection 

will become obvious. 

 

 

Static vs dynamic model 

Before we proceed further, let’s take a quick look at how a dynamic model differs from a static 

model. Consider a SISO process in Figure 1.3 where a step change in input is induced and 

the corresponding change in output is observed. 

 

 
Figure 1.3: Representative dynamic changes in a SISO process output upon a step change 

in input 

⋯ ⋯ 𝑦𝑠𝑡𝑒𝑎𝑑𝑦 

transition 
dynamics 
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➢ In static model, we are only concerned with being able to predict ysteady 

as the impact of the step change in u.  

➢ On the other hand, in dynamic model, we care about the transition 

dynamics as well. 

➢ It is obvious that a dynamic model estimation is a more demanding 

problem and the complexity only increases for multivariable systems 

with stochastic components. 

 

 

 

Validity of discrete-time models 

It won’t be wrong to say that continuous-time description of process systems (which 

are inherently continuous in nature) is more natural than discrete-time description. 

However, in computer controlled industrial plants, signals from the underlying 

continuous process are sampled and made available at discrete time-points. 

Therefore, there is sound rationale for focusing on discrete-time models. 

 

When using first principles approach, discrete-time model can be obtained as an 

approximation as well as an exact description of the underlying process. For 

example, consider the following differential equation 

𝑑𝑦

𝑑𝑡
= 𝑓(𝑦(𝑡), 𝑢(𝑡)) 

Approximating the derivative via forward difference gives,  

𝑦(𝑡 + 𝑇) − 𝑦(𝑡)

𝑇
= 𝑓(𝑦(𝑡), 𝑢(𝑡));    𝑇 𝑖𝑠 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

⇒ 𝑦(𝑡 + 𝑇) = 𝑦(𝑡) + 𝑇𝑓൫𝑦(𝑡), 𝑢(𝑡)൯ 

                           𝑜𝑟 

𝑦(𝑘 + 1) = 𝑦(𝑘)  +  𝑇 𝑓(𝑦(𝑘), 𝑢(𝑘));    𝑘 =  
𝑡

𝑇
 

 

 

In an alternate scenario, if the input variables are constant between samples, then 

an exact analytical discrete-time representation can be derived for linear processes.  

Discrete-time model 
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1.2 ML-DPM Workflow 

 

Figure 1.4 shows the typical steps involved in system identification. As you can see, SysID is 

more than just curve fitting. Overall, there are five broad tasks: data collection, exploratory 

data analysis, data pre-treatment, model identification, and model validation. Although we will 

study each step in detail in Chapter 4, let’s take a quick overview:  

 

• Data collection and exploratory data analysis: Availability of ‘proper’ data is 

absolutely critical and the requirement of ‘richness’ of training data is indispensable. In 

the previous section we saw that dynamic modeling is more demanding than static 

modeling and consequently, there are more stringent requirements on training data for 

dynamic modeling. Training data may be taken from historical database or fresh 

experiments may be performed. The training inputs should be such that the output data 

contains the dynamic variations of interest.  

 

Exploratory data analysis (EDA) involves preliminary (and usually manual) 

investigation of data to get a ‘feel’ of the system’s characteristics. The activities may 

include generating some graphical plots to check the presence of trends,  seasonality, 

and non-stationarity in data. Inferences made during EDA help make the right choices 

in the subsequent steps of SysID. 

 

• Data pre-treatment: This step consists of several activities that are designed to 

remove the portions of training data that are unimportant (or even detrimental) to model 

identification. It may entail removal of outliers and noise, removal of trends, etc. 

Alternatively, training data can also be massaged to manipulate the model’s accuracy 

as suited for the end purpose of the model. For example,  if the model is to be used for 

control purpose, then the training data may be pre-filtered to bolster model’s accuracy 

for high frequency signals. Overall, the generic guideline is that you have better 

chances of a successful SysID with a better conditioned dataset.  

 

• Model training: Model training is the most critical step in SysID and entails a few sub-

steps. First, a choice must be made on the type of disturbance model and deterministic 

model. The end use of the model, the available a priori system knowledge, and the 

desired degree of modeling complexity dictate these selections. For example, if the 

model is to be used for simulation purposes, then OE1 structure may be preferred over 

ARX; if process disturbance has different dynamics compared to process input, then 

ARMAX will be preferable; if computational convenience is sought, then ARX is usually 

 
1 We will cover these model structures in the upcoming chapters 
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the first choice and is preferred over other complex structures such as recurrent neural 

networks. Model structure selection is followed by model parameter estimation. This 

sub-step is mostly ‘hands-off’ due to the availability of several specialized libraries that 

perform parameter estimation. 

 

 

Figure 1.4: Steps (with sample sub-steps) involved in a typical ML-based dynamic modeling  

 

 

 

 

Representative illustrations 

𝑦(𝑘) =  0.6𝑦(𝑘 − 1) + 0.7𝑢(𝑘 − 3) + 𝑒(𝑘) 

Time plots 

detrending 

ARX modeling 

Step response check 
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• Model validation: Once a model has been fitted, the next step is to check if the model 

truly represents the underlying process. Several techniques are at a modeler’s 

disposal. For example, you could check the model’s performance on a dataset that has 

not been used during parameter estimation, plot the modeling errors to look for leftover 

patterns, or check if the model agrees with the a priori information about the system. 

Often, your first model will fail the validation procedure. An expert modeler can use the 

validation results to infer the reasons for the failure. Some examples of the cause could 

be  

➢ Training data was not ‘rich’ enough 

➢ Training data was not pre-treated adequately 

➢ Choice of model structure was wrong 

➢ Estimation algorithm did not converge  

 

 Once diagnosed, appropriate corrections are made, and the iterative procedure 

continues.  

 

We hope that you get the understanding that SysID is more than just black-box application of 

modeling algorithm for estimation of model parameters. There are several practical aspects 

that require active participation of the modeler during the SysID process. Without 

exaggeration, we can say that SysID is an art, and the rest of the book will help you obtain 

the necessary skills to become the SysID artist! 

 

1.3 Taxonomy of ML-based Dynamic Models 

 

The field of system identification is overwhelmingly extensive owing to the decades of 

research that has led to the development of several specialized techniques. Figure 1.5 gives 

an overview of some of the popular methods and models that we will cover in this book. These 

models represent only a subset of all the SysID models out there and this selection is based 

on our experience regarding the relevance of these models for process systems modeling. 

We largely focus on time-invariant2, discrete-time models and these shown models can help 

you handle a large majority of DPM problems you will encounter in process industry. 

 

 

 
2 Models where time variable does not appear as an explicit variable. 
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Figure 1.5: Some popular SysID methods and models covered in this book 

 

There are several noteworthy points in Figure 1.5. First, the apparent domination of linear 

models: you may have expected nonlinear models to be preferable for modeling complex 

industrial process systems, however, as it turns out, linear models are often justified for DPM. 

The justification stems from the fact that industrial processes often operate around an optimal 

point making the linear models pretty good approximation for usage in process control and 

process monitoring applications. If the end use of the model is process simulation or design 

where the system response over wide range of input variables is of interest, then nonlinear 

models can prove to be more suitable. Within linear category, different modeling options exist 

to cater to process systems with different characteristics, viz, multivariable outputs, presence 

of correlated noise, disturbances sharing dynamics with inputs, presence of measurement 

noise only, presence of drifts or non-stationarities, etc.  

The classification at the root of linear model sub-tree is based on the methodology used for 

model fitting. While PEM methods employ minimization of prediction errors, subspace 

methods are based on matrix algebra and do not involve any optimization for parameter 

optimization.3 Do not worry if these terms do not make much sense right now; they will soon 

become ‘obvious’ to you. If not trained about the nuanced differences between these different 

models and methods, you may not have much idea at the outset about which model would be 

the best one for your system. This book will help you gain adequate conceptual understanding 

to become adept at making the right choice and obtaining your coveted model quickly.  

 
3 Another distinction is that PEM is used to obtain input-output models while SIM is used to obtain state-space models.  
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Types of models 

In Eq. 1 we saw one way of representing a dynamic process model. The models from Figure 

1.5 can be used to generate other representations of your dynamic systems; the figure below 

shows the different forms/types of models that we will learn to derive in this book using 

machine learning. We will also understand the pros and cons of these different model forms. 

 

      

Figure 1.6: Different forms of dynamic process model (that we will learn to generate in this 

book), their defining characteristics, and corresponding representative examples 
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u 

Ignoring the presence of correlated equation error leads to biased (inaccurate) 

parameter estimates. Hopefully, this simple illustration has convinced you against blind 

application of ‘convenient’ models. Part II of this book will add several modeling tools 

to your ML-DPM arsenal to help avoid such modeling mistakes.  

Why careful choice of model matters: A simple illustration 

If not careful, you may just ignore the presence of measurement noise and attempt to fit 

the following input-output model to estimate the model parameters a and b.  

Consider the shown process: 

Process model: 

𝑥(𝑘 + 1) +  𝑎𝑥(𝑘)  =  𝑏𝑢(𝑘) 

𝑒(k) 
white Gaussian noise 

Assume true a=-0.8 

               true b=0.5 

Fitted Model (ARX form): 𝑦(𝑘 + 1) + 𝑎 𝑦(𝑘)  =  𝑏𝑢(𝑘) 

y 

Data file ‘simpleProcess.csv’ contains 1000 samples of u and y obtained from the true 

process. Below are the parameter estimates we get using this data, 

𝑎̂ = −0.6628 (± 0.016)  , 𝑏෠ = 0.7174 (±0.035) 

Two things are striking here: the estimates are grossly inaccurate, and the parameter 

error estimates seem to suggest high confidence in these wrong values! What went 

wrong in our approach? The reason is that the SNR (signal-to-noise ratio) value is not 

very high (data was generated with SNR ~ 10) and the fitted ARX model is wrong input-

output form of the true process. The correct form would be the following 

Correct input-output model 

𝑥(𝑘 + 1) + 𝑎𝑥(𝑘) = 𝑏𝑢(𝑘) 

𝑦(𝑘)  =  𝑥(𝑘)  +  𝑒(𝑘) 𝑦(𝑘 + 1) + 𝑎 𝑦(𝑘)  =  𝑏𝑢(𝑘)  +  𝑒(𝑘 + 1) + 𝑎𝑒(𝑘) ⇒ 

Equation error is not white (as assumed in 

ARX model) but colored! 

values in bracket denote standard errors  
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1.4 Applications of DPM in Process Industry 

 

In Figure 1.1, we saw some of the applications of dynamic models in process industry. To 

provide further perspectives into how a typical plant operator or management may use these 

varied applications, Figure 1.7 juxtaposes DPM applications alongside the typical decision-

making hierarchy in a process plant. Every step of plant operation is now-a-days heavily 

reliant on DPM-based tools and machine learning has proven to be a useful vehicle for quickly 

building these tools. You can use the models from Figure 1.5 for building these tools or if you 

use commercial vendor solutions, you can find them employing these models in their products. 

For example, in the process control field, FIR models have been the bedrock of industrial MPC 

controllers. In the last few years, commercial vendors have inducted CVA models in their 

offering due to the advantages provided by subspace models. The latest offering by Aspen, 

DMC34, incorporates neural networks for MPC and inferential modeling. ARX, BJ models are 

also used for industrial MPC5. 

 

 
Figure 1.7: DPM applications in different layers of operational hierarchy 

 
4 https://www.aspentech.com/en/products/msc/aspen-dmc3 
5 Qin and Badgwell, A survey of industrial model predictive control technology. Control Engineering Practice, 2003 
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This concludes our quick attempt to establish the connection between process industry, 

dynamic process modeling, and machine learning. It must now be obvious to you that modern 

process industry relies heavily on dynamic process modeling to achieve its objectives of 

reducing maintenance costs, and increasing productivity, reliability, safety, and product 

quality. ML-based DPM helps build tools quickly to facilitate achieving these objectives.  

 

This introductory chapter has also cautioned against blind application of ‘convenient’ ML 

models for dynamic modeling.  Your process data will throw several questions at you at each 

stage of system identification. No straightforward answers exist to these questions and only 

some time-tested guiding principles are available. While the rest of the book will familiarize 

you with these principles, the onus still lies on you to use your process insights and SysID 

➢ The regulatory control layer primarily comprises of (PID) control valves. 

Potential DPM applications may involve usage of soft-sensor for 

estimation of difficult-to-measure controlled variables. 

 

 

 

➢ The multivariable control layer usually consists of MPC and RTO 

modules. Here, dynamic models representing multivariable relationships 

between plant variables are used to ensure optimal operations of the 

plant. Another interesting application is development of operator training 

simulators (OTSs) for training plant operators. 

 

 

➢ The process diagnostics layer ensures timely fault detection and 

diagnostics. Here, process measurements can be compared against 

predictions from dynamic models to check for presence of process 

abnormalities. 

 

 

➢ The production scheduling layer has dynamic models to determine short-

term optimal production schedules using forecasts of product demand 

and/or raw-material cost. 
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understanding to make the right modeling choices. And yes, remember the age-old advice6, 

“All models are wrong, but some are useful.” 

 

 

Summary 

 

This chapter impressed upon you the importance of DPM in process industry and the role 

machine learning plays in it. We familiarized ourselves with the typical SysID workflow, 

explored its different tasks, and looked at different ML models available at our disposal for 

model identification. We also explored the application areas in process industry where ML has 

proved useful. In the next chapter we will take the first step and learn about the environment 

we will use to execute our Python scripts containing SysID code.  

 

  

 
6 Attributed to the famous statistician George E. P. Box. It basically implies that your (SysID) model will seldom exactly 
represent the real process. However, it can be close enough to be useful for practical purposes. 
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Chapter 2 
The Scripting Environment 

 
n the previous chapter we studied the various aspects of system identification and learned 

about its different uses in process industry. In this chapter we will quickly familiarize 

ourselves with the Python language and the scripting environment that we will use to write 

ML codes, execute them, and see results. This chapter won’t make you an expert in Python 

but will give you enough understanding of the language to get you started and help understand 

the several in-chapter code implementations in the upcoming chapters. If you already know 

the basics of Python, have a preferred code editor, and know the general structure of a typical 

SysID script, then you can skip to Chapter 3.  

 

If you skim through the system identification literature, you will find almost exclusive usage of 

MATLAB software as the computing environment. This is mostly attributed to the System 

Identification toolbox, a very powerful MATLAB toolbox developed by Prof. Lennart Jung (a 

legend in system identification). Unfortunately, this tool not freely available, and MATLAB is 

not yet as popular as Python among the ML community. Luckily, several good souls in the 

Python community have developed specialized libraries for all aspects of SysID. Most of the 

popular SysID models can now be generated using off-the-shelf Python libraries. Considering 

the dominance of Python for deep learning, Python becomes an excellent choice for SysID 

scripting.  

 

In the above context, we will cover the following topics to familiarize you to Python 

• Introduction to Python language  

• Introduction to Spyder and Jupyter, two popular code editors 

• Overview of Python data structures and scientific computing libraries 

• Python libraries for system identification 

• Overview of a typical ML-DPM/SysID script 

 

  

I 



` 

 
 

2.1 Introduction to Python 

 

Python is a high-level general-purpose computer programming language that can be used for 

application development and scientific computing. If you have used other computer languages 

like Visual Basic, C#, C++, Java, then you would understand the fact that Python is an 

interpreted and dynamic language. If not, then think of Python as just another name in the list 

of computer languages. What is more important is that Python offers several features that 

sets it apart from the rest of the pack making it the most preferred language for machine 

learning. Figure 2.1 lists some of these features. Python provides all tools to conveniently 

carry out all steps of an ML-DPM project, namely, data collection, data exploration, data pre-

processing, model ID, visualization, and solution deployment to end-users. In addition, freely 

available tools make writing Python code very easy7. 

 

 
Figure 2.1: Features contributing to Python language’s popularity 

 

Installing Python 

One can download official and latest version of Python from the python.com website. 

However, the most convenient way to install and use Python is to install Anaconda 

(www.anaconda.com) which is an open-source distribution of Python. Along with the core 

Python, Anaconda installs a lot of other useful packages. Anaconda comes with a GUI called 

Anaconda Navigator (Figure 2.2) from where you can launch several other tools.  

 
7 Most of the content of this chapter is similar to that in Chapter 2 of the book ‘Machine Learning in Python for Process 
Systems Engineering’ and have been re-produced with appropriate changes to maintain the standalone nature of this 
book. 
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Chapter 3 
Exploratory Analysis and Visualization of 

Dynamic Dataset: Graphical Tools 

 
n Chapter 1 we had remarked that system identification is an art. A part of the art lies in 

making right inferences from exploratory analysis of data and model residuals via visual 

plots. Yeah, you read that right: even with all the fancy algorithms at our disposal, 

sometimes visual inspection of data is still the best tool for a quick assessment of dataset and 

model validity. Visual plotting can often provide crucial clues about model structure and model 

troubleshooting, and forms an important component of deductive phase of SysID. These plots 

will be used repeatedly in the in-chapter illustrations in this book and therefore we thought it 

would be best to introduce the concepts behind these graphical tools right away.     

 

Visual plots can range from simple time plots to advanced spectral density plots. These may 

help us make some quick educated judgement about data stationarity, deterministic vs 

stochastic trends, presence of colored noise, whiteness of model residuals, etc. Don’t worry 

if you don’t understand these dynamic modeling-specific jargons for now. We will focus on 

generation and conceptual understanding of these plots in this chapter and learn inference-

making using these plots in the later chapters.  

 

Specifically, we will cover these topics 

• Autocorrelation and autocovariance plots 

• Partial autocorrelation plots 

• Cross-correlation and cross-covariance plots 

• Spectrum, spectral density plots, periodogram 
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3.1 Visual Plots: Simple Yet Powerful Tools 

 

In system identification, careful scrutiny of data plots forms a critical component right from the 

initial step of exploratory data analysis (EDA) to the last step of model validation. Consider 

plots a and b in Figures 3.1 which are time plots of output signals in two different scenarios. 

Just a visual inspection makes it apparent that the raw output signals contain trends. One can 

further infer that while plot a exhibits a deterministic trend, plot b exhibits a stochastic trend8. 

Such assessment during EDA can help a process modeler select appropriate class of models 

for their systems.  

 

 
Figure 3.1: Visual plots for time series data 

Consider further the plots 3.1c and d. Here, the shown noisy signals could correspond to the 

disturbance signals or the model residuals (difference between observations and model 

predictions). Here, unlike the previous example, the time plots don’t provide any quick obvious 

assessment. However, the derived visualizations, autocorrelation and spectral density plots 

make the distinction between the two scenarios very evident. These plots confirm that the 

shown signals have white noise and colored noise properties, respectively. If these were 

model residuals, then non-zero autocorrelations in plot 3.1d immediately suggest inadequate 

modeling. Moreover, the spectral density plot looks qualitatively similar to that of an 

autoregressive (AR) process and therefore, an AR model could be attempted for the colored 

 
8 We will see the details on the distinction between these two types of trends in Chapter 4.  

ACF ACF PSD PSD 

(c) (d) 

(a) (b) 
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Chapter 4 
Machine Learning-based Dynamic Modeling: 

Workflow and Best Practices 

 
n Figure 1.4 in Chapter 1 we looked at a typical workflow for system identification. What is 

noteworthy is that while model ID is only a part of this workflow, very often too much focus 

goes into application of model ID to estimate model parameters at the expense of other 

aspects of SysID. Dumping raw data into model ID module will invariably generate 

unsatisfactory model if data is not pre-treated appropriately. Additionally, you will seldom be 

right in your modeling choices in the very first attempt. The take-home message is that 

knowledge about how to prepare raw data to enhance its information content about the 

system, how to assess validity of obtained model, how to analyze modeling results critically, 

and how to iterate judiciously is absolutely critical for successful SysID. Fortunately, several 

guidelines and best practices have been devised to guide a process modeler at each step of 

the SysID workflow. We will learn these guidelines and best practices in this chapter. 

 

We will not cover the best practices associated with generic machine learning workflow. 

Concepts like feature extraction, feature engineering, cross-validation, regularization, etc. 

have already been covered in detail in our first book of the series. In this chapter our focus 

will be on the unique challenges presented by dynamic processes and the specific best 

practices to deal with them. Specifically, the following topics are covered 

• Identification test design using PRBS and GBN signals  

• Pre-treatment of raw data for removal of measurement noise, offsets, trends, and drifts 

• Guidelines around selection of model structure 

• Model order selection via AIC and cross-validation 

• Model quality assessment via residual analysis, simulation response analysis, etc. 
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4.1 System Identification Workflow 

 

So far in this book we have been consciously emphasizing the difference between model 

identification and system identification. While model ID is all about estimating model 

parameters, SysID is about ensuring that the model truly represents the underlying system 

and stands consistent w.r.t. any prior available knowledge and any modeling assumptions. 

Figure 4.1 reproduces the SysID workflow we had seen in Chapter 1 and shows the several 

steps that serve to achieve the stated goals. The rest of the chapter will sensitize you about 

these varied aspects of SysID and help you gain working-level understanding about how to 

successfully execute a SysID project. 

 
Figure 4.1: Typical steps in a SysID workflow that we will cover in this chapter 

The first step of the workflow is data collection. Whether you are using pre-existing historical 

data or conducting fresh identification tests, you must ensure that the dataset has enough 

‘juice’ in it to enable identification of the desired model. We will soon see some guidelines 

around this task. The next step corresponds to sanitizing the data to remove the unwanted 

components that can negatively impact model ID. For example, elimination of any slow drift 

in the output signals is essential to avoid incorrect model parameters. After the first two steps, 

our dataset is ready and we come to model structure selection where the onus is on the 

process modeler to choose the right class of process and noise models. We saw in Chapter 

1 that an incorrect choice can lead to biased parameters estimates. Your expert domain 

knowledge and any prior information on process disturbances can come in quite handy at this  
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Chapter 5 
Time Series Analysis: Concepts and 

Applications 

 
s alluded to before, time series analysis (TSA) refers to study of time series signals 

from processes without exogenous inputs. Before we dive into the relatively more 

complex world of input-output modeling, it would be prudent to first get acquainted with 

how to model stochastic variations in signals and compactly describe the dependencies 

among adjacent observations in a time series. The study of time series is not just for 

pedagogical convenience. SysID derives many concepts from time series analysis and 

therefore, a strong foundation in modeling time series is important for mastering the art of 

SysID. 

 

Time series analysis can help us to characterize I/O model residuals and get clues regarding 

further model refinement. If your process has measured disturbance signals (inputs that can’t 

be manipulated; for example, ambient temperature), then they can be modeled via TSA to 

provide better forecasts and control. Furthermore, TSA can be used to model controlled 

process variables and build process monitoring tools. In this chapter, we will work through 

case-studies illustrating these applications. 

 

Apart from setting a strong foundation of digital signal processing, this chapter will also 

introduce the backshift notation and transfer function operator. These constructs are quite 

useful for compact description and algebraic manipulation of the difference equations. 

Specifically, the following topics are covered 

• Introduction to AR, MA, and ARMA models for stationary signals    

• Using ACF and PACF for model structure selection 

• Monitoring controlled process variable in a CSTR using ARMA models 

• Introduction to ARIMA models for nonstationary signals 

• Forecasting measured signals using ARIMA models    
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5.1 Time Series Analysis: An Introduction 

 

Time series analysis refers to the study and modeling of dependencies among sequential data 

points in time series signals. Several approaches exist for modeling time series. In this 

chapter, we will look at four of the most common models as shown in Figure 5.1. While AR, 

MA, and ARMA models are used to describe stationary signals, ARIMA is used for 

(homogeneous) nonstationary signals. In this chapter, we will understand the differences, 

similarities, and the inherent connections between these models.  

 
Figure 5.1: Commonly employed univariate time-series models 

To further motivate the study of time series analysis, let’s briefly look at two of the use cases 

that were mentioned previously. The illustration below shows a CSTR unit that has measured 

disturbance signals (feed concentration and temperature). An accurate model for these 

signals can help generate accurate forecasts and control the vessel temperature more 

effectively. Also, it is easy to show that if the setpoint of the controllers do not change, then 

the controlled variables (here, output product temperature and concentration) depend on 

process disturbances alone. Therefore, a TSA model for these variables can be built to 

eventually look for significant mismatch between measurements and model predictions as an 

indicator of process faults.  
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Continuous Stirred Tank Reactor 

(Created by Daniele Pugliesi under Creative Commons Attribution-Share Alike 3.0, 

https://commons.wikimedia.org/wiki/File:Agitated_vessel.svg) 

Cooling jacket temperature is used to 

control the reactor/product temperature 

at optimal set-point 

Rest of the Chapter 5 not shown in this preview 
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Chapter 6 
Input-Output Modeling - Part 1:  

Simple Yet Popular Classical Linear Models 

 
here is beauty is simplicity -  this age-old truth perfectly sums up the reason behind the 

popularity of two simple input-output models, FIR and ARX models, that we will learn 

about in this chapter. In the age of artificial neural networks, these models still hold on 

their own and are an essential part of any PDS’s toolkit. As alluded to before, I/O processes 

have inputs signals that can be manipulated to control the output signals. The objective, 

therefore, of I/O modeling is to find the deterministic relationship between the input and output 

signals, and, optionally, find a suitable model for the stochastic disturbances affecting the 

outputs. 

 

FIR model is a non-parametric model and is used in thousands of MPC solutions in process 

industry globally. The remarkable success of the FIR-based MPCs is testament to the fact 

that simple models can be quite useful representation of complex industrial processes. FIR 

models are intuitive and simple enough to be understood by plant operators. However, nothing 

is all rosy with anything. FIR models, owing to their flexibility, often lead to overfitting. ARX 

models, on the other hand, are parametric models and require much lower number of 

parameters. Consequently, the resulting models are ‘smoother’. ARX models are often the 

initial choice in any SysID exercise. Nonetheless, ARX models can easily suffer from high 

bias errors. Since these two models are so critical, this chapter is devoted to understanding 

their various aspects, along with their pros and cons, in detail.   

 

Specifically, the following are covered in the chapter. 

• Introduction to FIR and ARX models    

• SysID of industrial furnaces using FIR and ARX models 

• Hyperparameter selection for FIR and ARX models 

• Stochastic component of ARX models 

• Model bias in FIR and ARX models 
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6.1 FIR Models: An Introduction 

 

Impulse response of a system is its response to a special impulse input as shown in Figure 

6.1. The impulse response model approximates the system output as a linear combination of 

several impulse responses due to past inputs. Since the impulse responses usually decay to 

zero, it suffices to include only the past few values (say M) of u(k) to approximate y(k). The 

value ‘M’ is called the model order and the resulting model is called the finite impulse response 

(FIR) model. You will notice that there is no attempt to model stochastic disturbances and a 

non-parametric modeling form (there is no compact mathematical structure) is adopted. 

Consequently, FIR model is among the simplest SysID model. 

Figure 6.1: Impulse response model for a SISO system 

Fitting a FIR model entails estimation of the impulse response coefficients. Although a FIR 

model’s structure is quite simple, it is very flexible and given sufficiently large M, any type of 

complex impulse response can be fitted. It is common to employ model orders of 90 to 120 to 

get all the impulse coefficients. However, such large parameters dimensionality often leads to 

overfitting (impulse response curves show wiggles or spikes due to output signal corruption 

by process disturbances). Apart from model flexibility, another advantage of FIR model is that 

an estimate of I/O delay is automatically obtained after model fitting. For a system with delay 

d, the first d impulse coefficients will be zero or close to zero. This is in fact a classical method 

for delay estimation. FIR models also provide unbiased parameter estimates as the 

deterministic part of the model is independently parametrized (recall our discussion from 

Chapter 4). These favorable properties of FIR models make them the dominant SysID model 

deployed in industrial MPCs9. 

 
9 Darby and Nikolaou, MPC: Current practice and challenges. Control Engineering Practice, 2012 
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6.2 FIR Modeling of Industrial Furnaces 

 

To showcase an industrial application of FIR models, we will consider fired heaters used in 

petroleum refineries wherein, as shown in the figure below, fuel is combusted to heat feed oil 

and vaporize it for subsequent fractionation10. In the SISO version of the system, we will 

consider the task of keeping the outlet temperature of the heated oil (TO) in control. Changes 

in feed oil temperature, TI, or the feed flow will impact TO. The controller adjusts the flow of 

the fuel gas (although indirectly, by manipulating the set-point of the flue-gas PID controller. 

The PID controller, not shown in the schematic, adjusts the fuel-gas stream’s valve opening 

to meet the specified flow)11. The process controller, however, needs a model to understand 

the relationship between flue gas flow set-point (FGSP) and TO.  

 

To obtain the model, we will use data provided in the file IndustrialFiredHeater_SISO.csv 

which contains 1000 samples of TO and FGSP obtained from an open-loop simulation of the 

system wherein FGSP was excited using a GBN signal and the system was subjected to 

disturbances in TI.12 Note that the time interval here is in minutes and not seconds. 

 

 
Figure 6.2: Representative schematic of a fired heater used in petroleum refineries 

 
10 The reader is referred to https://apmonitor.com/dde/index.php/Main/FiredHeaterSimulation for more details on the 
system. At this link, readers can also find the system model that is used to generate the simulation dataset used in this 
case-study. 
11 Using PID controller’s setpoints as manipulated variables is a very standard approach in modern (MPC) controllers. 
12 Online code repository shows how the identification test data was generated 
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Chapter 7 
Input-Output Modeling - Part 2:  

Handling Process Noise the Right Way 

 
n the previous chapter we saw that the FIR and high-order models can provide unbiased 

and linear-in-parameter models, but, unfortunately, suffer from high variance errors due to 

large number of parameters. Therefore, in this chapter, we will look at other popular model 

structures, namely, ARMAX, OE, and Box-Jenkins, that can provide more parsimonious 

description of the underlying process and generate unbiased models. These models allow 

greater flexibility in noise dynamics and capture the fact that noise may enter (or originate in) 

the system at different points which, in turn, determines the structure of the noise transfer 

operator. However, there is no free lunch! These models generate non-linear-in-parameter 

predictors and therefore the parameter estimation procedures are computationally more 

complex. Nonetheless, addition of these models to your ML-DPM toolkit will allow you to 

choose model structure specific to the problem at hand.  

 

In the later part of this chapter, we will relax the stationarity conditions on disturbance signals 

and look at how to model processes with non-stationary disturbances. We will see how 

differencing input and output signals helps in removing disturbance non-stationarities. Using 

simulated illustrations, we will try to understand the implications of choosing these model 

structures. Specifically, we will study the following topics.   

• Introduction to ARMAX and Box-Jenkins models 

• Modeling distillation columns using ARMAX models    

• Introduction to OE model structure and its comparison to ARX model structure 

• Introduction to ARIMAX models 

• Modeling gas furnace systems using Box-Jenkins models 
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7.1 PEM Models 

 

In Chapter 6, we saw how the ARX model provides a very restrictive treatment of the process 

disturbances. We also saw how this shortcoming can lead to significant model bias. 

Accordingly, the focus in this chapter is to overcome this shortcoming and look at other 

popular alternatives to ARX model, namely, the output error (OE) model, the  autoregressive 

moving average with eXogenous (ARMAX) inputs model, and the Box-Jenkins (BJ) model. 

As shown in Figure 7.1, these parametric models provide a broad spectrum of options 

regarding the parametrization of the noise transfer operator (H). For example, while 

disturbances are not modeled and only input transfer operator is sought in OE framework, 

completely independent parametrization of both G and H operators are allowed in the BJ 

model. In the next few sections, we will explore these models’ properties and learn how to use 

them judiciously.   

 
Figure 7.1: Model structure of PEM models 

All the models in Figure 7.1 belong to the family of prediction error methods wherein the model 

parameters are estimated by minimizing the one-step ahead prediction errors (ε(k)) where,  
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7.3 ARMAX Modeling of Distillation Columns 

 

To showcase an industrial application of ARMAX models, we will use a simulated dataset 

from a distillation column. The ubiquity and importance of distillation columns in process 

industry cannot be overstated. Figure 7.3 shows a schematic of one such column wherein the 

incoming feed is separated into a top product (distillate) and a bottoms product. Strict control 

of the product flows and concentrations is critical for optimal column operations and the 

heating power (QB) supplied to the reboiler which drives the vapor flow in the column is a 

commonly used manipulated variable. Therefore, we will attempt to build a dynamic model 

between the distillate concentration (XD) and QB to help the column controller operate the unit 

efficiently. To obtain the model, we will use data provided in the file 

DistillationColumn_SNR10.csv which contains 1000 samples of QB and XD obtained from an 

open-loop simulation of the system wherein QB was excited using a GBN signal.13 

 

 
Figure 7.3: Representative schematic of a distillation column used in process industry 

 

Let’s start by importing the required packages and exploring the provided I/O dataset.  

 

 

 
13 The model for the distillation column was taken from ‘Digital control systems: design, identification and 
implementation. Springer, 2006’. 
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Chapter 8 
State-Space Models:  

Efficient Modeling of MIMO Systems 

 
n the previous chapter we alluded to the problems related to the classical methodology of 

modeling a MIMO system through separate MISO models for each output. In a physical 

system, the different output variables seldom behave independently; they often share 

common parameters and/or correlated noise. Therefore, identifying all the output models 

simultaneously while being cognizant of shared dynamics between them leads to better and 

more robust models. This alternative approach to SysID is provided by state-space (SS) 

models. State-space models add an intermediate layer of ‘state variables’ between the input 

and output variables, wherein, the inputs determine the states, and the outputs are derived 

as linear combination of the states. This modeling paradigm leads to parsimonious models 

capable of fitting complex processes with both fast and slow dynamics.  

 

In this chapter, we will cover in detail the subspace identification techniques which are utilized 

for fitting the SS models. While several popular subspace identification methods (SIMs) such 

as N4SID, CVA, MOESP exist, CVA will be our primary focus. Subspace identification offers 

several additional advantages over I/O models. SIMs involve only linear algebra for model ID 

(no iterative nonlinear optimization schemes are needed). SIMs also provide in-situ 

mechanism for automated optimal model order selection. Subspace models are more robust 

to noise and provide smooth (step and impulse) response curves. Infact, it is not uncommon 

to fit SIM model to I/O data and then derive FIR model using the SIM model for usage in MPC 

applications. Due to such superior properties of SIM, they are among the ‘mainstream’ models 

provided by advanced process control (APC) solution vendors.   

 

CVA models are also inherently suitable for computing fault detection indices, performing fault 

diagnosis, and therefore building process monitoring tools. We will build one such application 

in this chapter. Specifically, the following topics will be covered 

• Introduction to state-space models and CVA modeling    

• Modeling MIMO glass furnace via CVA 

• Process monitoring of Industrial Chemical Plants using CVA  
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8.1 State-Space Models: An Introduction 

 

Consider the distillation column in Figure 8.1 where we have four inputs and four outputs. 

Let’s focus on the relationship between the reboiler duty QB and distillate composition xD. We 

can build an I/O model between QB and xD, but it is clear that QB doesn’t affect xD directly. 

There are internal dynamics or states (e.g., arising from the liquid holdup at each column tray) 

that changes in QB have to pass through before impacting xD. Similar argument could be made 

for QB vs D relationship. The unobserved intermediate variables which characterize the 

internal dynamics or ‘states’ of the column are termed state variables and, as argued before, 

the outputs share these states. The modeling framework that reflects such interrelationship 

between the inputs and outputs is the state-space model whose structure14 is shown in Figure 

8.1. In a generic modeling exercise, the estimated state variables may not always have any 

physical meanings and even the choice of the states is not unique.  

 
Figure 8.1: State-space representation of a process15 

Our familiar PEM methodology could be used to estimate SS models but that would involve 

solving a nonlinear optimization problem. The better alternative is the subspace identification  

method.  

 
14 The matrix D is often kept equal to zero due to no immediate direct impact of u(k) on y(k)  
15 Column diagram created by Milton Beychok under Creative Commons Attribution-Share Alike 3.0 
[http://commons.wikimedia.org/wiki/File:Continuous_Binary_Fractional_Distillation.PNG] 
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Chapter 9 
Nonlinear System Identification:  

Going Beyond Linear Models 

 
n the previous chapters we restricted our attention to only linear processes. However, most 

industrial processes exhibit linear behavior only in a limited range of operating conditions. 

If a global model of complex processes (such as high-purity distillation, pH neutralization, 

polymerization, etc.) is sought, then the demon of nonlinearity would inadvertently surface. It 

won’t be an exaggeration to state that nonlinearity is not an exception, rather the rule in 

process industry. We won’t be surprised if you are tempted to always resort to artificial neural 

networks-based structures which have become synonymous with nonlinear modeling now-a-

days. However, there exist simple classical nonlinear model structures which are more 

interpretable and equally powerful. We will explore these models in this chapter.  

 

Nonlinear models can be powerful tools but there are certain costs to their usage. These 

include greater demand for variability in training data (which means more laborious 

experiment design), more complex model selection procedure, and more computationally 

intensive parameter estimation. Therefore, the decision to use nonlinear models should be 

judiciously made. If you do decide to go ahead, then the concepts covered in this chapter may 

help you greatly. Specifically, the following topics will be covered 

• Introduction to NARX models    

• Modeling heat exchanger process using NARX models 

• Introduction to block-structured models, specifically, Hammerstein models and Wiener 

models   
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9.1 Nonlinear System Identification: An Introduction 

 

Nonlinear SysID becomes a necessary evil when accurate predictions are sought over wide 

range of operating conditions. Although nonlinear SysID literature is not as mature as linear 

SysID, SysID community has developed several useful approaches for nonlinear modeling. 

Figure 9.1 shows a few popular approaches. In the 1st approach, a nonlinear relationship is 

directly fitted between y(k) and past data The nonlinear form could be polynomial-based or 

more complex such as neural network-based. We will focus on the polynomial form in this 

chapter. Just like linear SysID, different model structures can be postulated, namely, nonlinear 

ARX (NARX), NOE, NARMAX, etc. In the 2nd approach, the linear and nonlinear parts are 

defined in separate blocks, leading to block-structured models. Depending upon whether the 

nonlinear block comes before or after the linear block, one could have the Hammerstein model 

or the Wiener model (the two most popular models from this class). In the 3rd approach, 

several linear models are built for different regions of the operating space and then they are 

combined to give one global model. Numerous industrial applications of these approaches 

have been reported for predictive modeling, process control, and process monitoring. 

 
Figure 9.1: Popular classical approaches for nonlinear system identification 

Nonlinear transformation 

Considering high computational burden of nonlinear SysID, if the nature of nonlinearity is 

known beforehand, then a nonlinear transformation of the input or output variables may be 

utilized to avoid explicit nonlinear fitting. Illustrations below provide some example scenarios. 
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9.3 Nonlinear Identification of a Heat Exchanger 

Process Using NARX 

 

To demonstrate the utility of nonlinear SysID, we will use data from a liquid-saturated steam 

heat exchanger16 where hot saturated steam is used to heat cold liquid. The provided dataset 

contains 4000 samples (sampling time 1s) of input (liquid flow rate) and output (outlet liquid 

temperature) variables.  For this benchmark nonlinear process, our objective will be to build  

a dynamic model to predict the outlet liquid temperature as a function of incoming liquid 

flowrate. The dataset can be downloaded from the DaISy datasets repository. 

 

 
Figure 9.3: Liquid-saturated steam heat exchanger 

 

We will use the SysIdentPy package for this nonlinear SysID exercise. Let’s begin by exploring the 

dataset. 

 

 

 

 

 

 
16 De Moor B.L.R. (ed.), DaISy: Database for the Identification of Systems, Department of Electrical Engineering, 
ESAT/STADIUS, KU Leuven, Belgium, URL: http://homes.esat.kuleuven.be/~smc/daisy/ 
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Chapter 10 
Artificial Neural Networks:  

Handling Complex Nonlinear Systems  

 

t won’t be an exaggeration to say that artificial neural networks (ANNs) are currently the 

most powerful modeling construct for describing generic nonlinear processes. ANNs can 

capture any kind of complex nonlinearities, don’t impose any specific process 

characteristics, and don’t demand specification of process insights prior to model fitting.  

Furthermore, several recent technical breakthroughs and computational advancements have 

enabled (deep) ANNs to provide remarkable results for a wide range of problems. 

Correspondingly, ANNs have re(caught) the fascination of data scientists and the process 

industry is witnessing a surge in successful applications of ML-based process control, 

predictive maintenance, and inferential modeling involving ANN-based system identification.  

 

For SysID, ANNs are commonly used in NARX framework wherein an ANN model is fitted to 

find the nonlinear relationship between current output and past input/output measurements. 

In such applications, the FFNN (feed-forward neural networks) is invariably employed. 

However, for dynamic modeling, a specialized type of network called RNN (recurrent neural 

network) exist which is designed to be aware of the temporal nature of dynamic process data. 

Consequently, RNNs tend to be more parsimonious than FFNN. We will see SysID 

applications of both these popular architectures in this chapter.   

 

There is no doubt that ANNs have proven to be monstrously powerful. However, it is not easy 

to tame this monster. If the model hyperparameters are not set judiciously, it is very easy to 

end up with disappointing results. The reader is referred to Part 3 of Book 1 of this series for 

a detailed exposition on ANN training strategies and different facets of ANN models. In this 

chapter, SysID relevant concepts are sufficiently described to enable an uninitiated reader to 

learn how to use ANNs. Specifically, the following topics are covered  

• Introduction to ANN, FFNN, RNN, LSTM 

• Heat exchanger SysID via FFNN-based NARX  

• Heat exchanger SysID via LSTM  
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10.1 ANN: An Introduction 

 

Artificial neural networks (ANNs) are nonlinear empirical models which can capture complex 

relationships between input-output variables via supervised learning or recognize data 

patterns via unsupervised learning.  Architecturally, ANNs were inspired by human brain and 

are a complex network of interconnected neurons as shown in Figure 10.1.  An ANN consists 

of an input layer, a series of hidden layers, and an output layer. The basic unit of the network, 

neuron, accepts a vector of inputs from the source input layer or the previous layer of the 

network, takes a weighted sum of the inputs, and then performs a nonlinear transformation to 

produce a single real-valued output. Each hidden layer can contain any number of neurons.  

 
Figure 10.1: Architecture of a single neuron and feedforward neural network with 2 hidden layers 

for a SISO (single input single output) process within NARX framework 

The network shown in Figure 10.1 is an example of a fully-connected feed-forward neural 

network (FFNN), the most common type of ANN. In FFNN, signals flow in only one direction, 

from the input layer to the output layer via hidden layers. Neurons between consecutive layers 

are connected fully pairwise and neurons within a layer are not connected.  

 

                                 What is deep learning 

In a nutshell, using an ANN with a large number of hidden layers to find 

relationship/pattern in data is deep learning (technically, ≥ 2 hidden 

layers implies a deep neural network (DNN)). Several recent algorithmic 

innovations have overcome the model training issues for DNNs which 

have resulted in the DNN-led AI revolution we are witnessing today. 

Single Neuron 

Nonlinear mapping 
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Machine Learning in Python for Dynamic Process Systems 

By the process data scientists, for the process data scientists, of process data science 

This book is designed to help readers gain a working-level knowledge of machine 

learning-based modeling techniques for dynamic processes. Readers can leverage 

the concepts learned to build advanced solutions for process monitoring, soft sensing, 

predictive maintenance, and process control for dynamic systems. The application-

focused approach of the book is reader friendly and easily digestible to the practicing 

and aspiring process engineers, and data scientists. Upon completion, readers will be 

able to confidently navigate the system identification literature and make judicious 

selection of modeling approaches suitable for their problems. 

 

The following topics are broadly covered: 

• Exploratory analysis of dynamic dataset 

• Best practices for dynamic modeling 

• Linear and discrete-time classical parametric and non-parametric models 

• State-space models for MIMO systems 

• Nonlinear system identification and closed-loop identification 

• Neural networks-based dynamic process modeling  
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