
Ankur Kumar, Jesus Flores-Cerrillo

F
ro

m
 D

a
ta

 t
o

 P
ro

c
e

s
s

 I
n

s
ig

h
ts

ML for Process Industry Series

First Edition

Machine Learning in Python for

Process and Equipment Condition

Monitoring, and Predictive

Maintenance

2
0

2
4

Machine Learning in Python

for Process and Equipment

Condition Monitoring, and

Predictive Maintenance

From Data to Process Insights

Ankur Kumar

Jesus Flores-Cerrillo

Dedicated to our spouses, families, friends, motherlands, and all the data-science
enthusiasts

आचार्ाात्पादमादते्त पादं शिष्यः स्वमेधर्ा ।

पादं सब्रह्मचारिभ्यः पादं कालक्रमेण च ॥

A student receives a quarter (of his/her learning) from the teacher,

a quarter by way of his/her intelligence,

a quarter from fellow students,

and a quarter through the course of time.

- A popular Sanskrit shloka

Machine Learning in Python for Process and Equipment Condition
Monitoring, and Predictive Maintenance

www.MLforPSE.com

Copyright © 2024 Ankur Kumar

All rights reserved. No part of this book may be reproduced or transmitted in any form or
in any manner without the prior written permission of the authors.

.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented and obtain permissions for usage of copyrighted materials.

However, the authors make no warranties, expressed or implied, regarding errors or
omissions, and assume no legal liability or responsibility for loss or damage resulting

from the use of information contained in this book.

Plant image on cover page obtained from https://pixabay.com/.
.

To request permissions, contact the authors at MLforPSE@gmail.com

First published: January 2024

http://www.mlforpse.com/

About the Authors

Ankur Kumar holds a PhD degree (2016) in Process Systems Engineering

from the University of Texas at Austin and a bachelor’s degree (2012) in

Chemical Engineering from the Indian Institute of Technology Bombay. He

currently works at Linde in the Advanced Digital Technologies & Systems

Group in Linde’s Center of Excellence, where he has developed several in-

house machine learning-based monitoring and process control solutions for

Linde’s hydrogen and air-separation plants. Ankur’s tools have won several

awards both within and outside Linde. One of his tools, PlantWatch (a

plantwide fault detection and diagnosis tool), received the 2021 Industry 4.0 Award by the

Confederation of Industry of the Czech Republic. Ankur has authored or co-authored several

peer-reviewed journal papers (in the areas of data-driven process modeling and monitoring),

is a frequent reviewer for many top-ranked Journals, and has served as Session Chair at

several international conferences. Ankur served as an Associate Editor of the Journal of

Process Control from 2019 to 2021, and currently serves on the Editorial Advisory Board of

Industrial & Engineering Chemistry Research Journal. Most recently, he was included in the

‘Engineering Leaders Under 40, Class of 2023‘ by Plant Engineering Magazine.

Jesus Flores-Cerrillo is currently an Associate Director - R&D at Linde and

manages the Advanced Digital Technologies & Systems Group in Linde’s

Center of Excellence. He has over 20 years of experience in the development

and implementation of monitoring technologies and advanced process

control & optimization solutions. Jesus holds a PhD degree in Chemical

Engineering from McMaster University and has authored or co-authored

more than 40 peer-reviewed journal papers in the areas of multivariate

statistics and advanced process control among others. His team develops and implements

novel plant monitoring, machine learning, IIOT solutions to improve the efficiency and

reliability of Linde’s processes. Jesus’s team received the Artificial Intelligence and Advanced

Analytics Leadership 2020 award from the National Association of Manufacturers’

Manufacturing Leadership Council.

Note to the readers

Jupyter notebooks and Spyder scripts with complete code implementations are available for

download at https://github.com/ML-PSE/Machine_Learning_for_PM_and_PdM. Code

updates, when necessary, will be made and updated on the GitHub repository. Updates to

the book’s text material will be available on Leanpub (www.leanpub.com) and Google Play

(https://play.google.com/store/books). We would greatly appreciate any information about

any corrections and/or typos in the book.

https://github.com/ML-PSE/Machine_Learning_for_PM_and_PdM
http://www.leanpub.com/
https://play.google.com/store/books

Series Introduction

In the 21st century, data science has become an integral part of the work culture at every

manufacturing industry and process industry is no exception to this modern phenomenon.

From predictive maintenance to process monitoring, fault diagnosis to advanced process

control, machine learning-based solutions are being used to achieve higher process reliability

and efficiency. However, few books are available that adequately cater to the needs of

budding process data scientists. The scant available resources include: 1) generic data

science books that fail to account for the specific characteristics and needs of process plants

2) process domain-specific books with rigorous and verbose treatment of underlying

mathematical details that become too theoretical for industrial practitioners. Understandably,

this leaves a lot to be desired. Books are sought that have process systems in the backdrop,

stress application aspects, and provide a guided tour of ML techniques that have proven

useful in process industry. This series ‘Machine Learning for Process Industry’ addresses

this gap to reduce the barrier-to-entry for those new to process data science.

The first book of the series ‘Machine Learning in Python for Process Systems

Engineering’ covers the basic foundations of machine learning and provides an overview of

broad spectrum of ML methods primarily suited for static systems. Step-by-step guidance on

building ML solutions for process monitoring, soft sensing, predictive maintenance, etc. are

provided using real process datasets. Aspects relevant to process systems such as modeling

correlated variables via PCA/PLS, handling outliers in noisy multidimensional dataset,

controlling processes using reinforcement learning, etc. are covered. The second book of the

series ‘Machine Learning in Python for Dynamic Process Systems’ focuses on dynamic

systems and provides a guided tour along the wide range of available dynamic modeling

choices. Emphasis is paid to both the classical methods (ARX, CVA, ARMAX, OE, etc.) and

modern neural network methods. Applications on time series analysis, noise modeling,

system identification, and process fault detection are illustrated with examples. This third

book of the series takes a deep dive into an important application area of ML, viz, prognostics

and health management. ML methods that are widely employed for the different aspects of

plant health management, namely, fault detection, fault isolation, fault diagnosis, and fault

prognosis, are covered in detail. Emphasis is placed on conceptual understanding and

practical implementations. Future books of the series will continue to focus on other aspects

and needs of process industry. It is hoped that these books can help process data scientists

find innovative ML solutions to the real-world problems faced by the process industry.

With the growing trend in usage of machine learning in the process industry, there is growing

demand for process domain experts/process engineers with data science/ML skills. These

books have been written to cover the existing gap in ML resources for such process data

scientists. Specifically, books of this series will be useful to budding process data scientists,

practicing process engineers looking to ‘pick up’ machine learning, and data scientists

looking to understand the needs and characteristics of process systems. With the focus on

practical guidelines and industrial-scale case studies, we hope that these books lead to wider

spread of data science in the process industry.

Other book(s) from the series

(https://MLforPSE.com/books/)

 Book 1 Book 2

Preface

Imagine yourself in the shoes of a process engineer/analyst who has been assigned his/her

first machine learning-based project with the objective of building a plantwide monitoring tool.

Although an exciting task, it may easily turn into a frustrating effort due to the difficulty in

finding the right methodology that works for the process system at hand. Building a

successful process monitoring tool is challenging due to the different characteristics a

process dataset may possess which precludes the possibility of a single methodology that

works for all scenarios. Consequently, a number of powerful techniques have been devised

over the past several decades. While it is good to be spoilt with choices, it is easy for a

newcomer to get ‘drowned’ in the huge (and still burgeoning) literature on process monitoring

(PM) and predictive maintenance (PdM). There are a lot of scattered resources on PM and

PdM. However, unfortunately, no textbook exists that focusses on practical implementation

aspects and provides comprehensive coverage of commonly used PM/PdM techniques that

have proven useful in process industry. There is a gap in available machine learning

resources for PM/PdM catering to industrial practitioners and this book attempts to cover this

gap. Specifically, we wished to create a reader-friendly and easy-to-understand book that

can help its readers become ‘experts’ on ML-based PM/PdM ‘quickly’ (disclaimer: there is no

magic potion; hard work is still required!) with the right guidance.

In this book, we cover all three main aspects of process monitoring and predictive

maintenance, namely, fault/anomaly detection, fault diagnosis/identification, and fault

prognostics/remaining useful life estimation (RUL). Our intent is not to give a full treatise on

all the PM/PdM techniques that exist out there; albeit our focus is to help budding process

data scientists (PDSs) gain a bird’s-eye view of the PM/PdM landscape, obtain working-level

knowledge of the mainstream techniques, and have the practical know-how to make the right

choice of models. In terms of the spectrum of methodologies covered, we place equal

emphasis on modern deep-learning methods and classical statistical methods. While deep-

learning has provided remarkable results in recent times, the classical statistical (and

ML/data mining) methods are not yet obsolete. Infact MSPM (multivariate statistical process

monitoring) techniques are still widely used for process monitoring. Accordingly, this book

covers the complete spectrum of methodologies with univariate Shewhart-/CUSUM-/EWMA-

based control charts on one end and deep-learning-based RUL estimations on the other.

Guided by our own experiences from building monitoring models for varied industrial

applications over the past several years, this book covers a curated set of ML techniques

that have proven useful for PM/PdM. The broad objectives of the book can be summarized

as follows:

• reduce barrier-to-entry for those new to the field of PM/PdM

• provide working-level knowledge of PM/PdM techniques to the readers

• enable readers to make judicious selection of PM/PdM techniques appropriate for their

problems through intuitive understanding of the advantages and drawbacks of

different techniques

• provide step-by-step guidance for developing industrial level solutions for PM/PdM

• provide practical guidance on how to choose model hyperparameters judiciously

This book adopts a tutorial-style approach. The focus is on guidelines and practical

illustrations with a delicate balance between theory and conceptual insights. Hands-on-

learning is emphasized and therefore detailed code examples with industrial-scale datasets

are provided to concretize the implementation details. A deliberate attempt is made to not

weigh readers down with mathematical details, but rather use it as a vehicle for better

conceptual understanding. Complete code implementations have been provided in the

GitHub repository.

We are quite confident that this text will enable its readers to build process monitoring and

prognostics models for challenging problems with confidence. We wish them the best of luck

in their career.

Who should read this book

The application-oriented approach in this book is meant to give a quick and comprehensive

coverage of mainstream PM/PdM methodologies in a coherent, reader-friendly, and easy-to-

understand manner. The following categories of readers will find the book useful:

1) Data scientists new to the field of process monitoring, equipment condition monitoring,

and predictive maintenance

2) Regular users of commercial anomaly detection software (such as Aspen Mtell)

looking to obtain a deeper understanding of the underlying concepts

3) Practicing process data scientists looking for guidance for developing process

monitoring and predictive maintenance solutions

4) Process engineers or process engineering students making their entry into the world

of data science

5) Industrial practitioners looking to build fault detection and diagnosis solutions for

rotating machinery using vibration data

Pre-requisites

No prior experience with machine learning or Python is needed. Undergraduate-level

knowledge of basic linear algebra and calculus is assumed.

Book organization

The book follows a holistic and hands-on approach to learning ML where readers first gain

conceptual insight and develop intuitive understanding of a methodology, and then

consolidate their learning by experimenting with code examples. Under the broad theme of

ML for process systems engineering, this book is an extension of the first two book of the

series (which dealt with fundamentals of ML, varied applications of ML in process industry,

and ML methods for dynamic system modeling); however, it can also be used as a

standalone text. Industrial process data could show varied characteristics such as

multidimensionality, non-Gaussianity, multimodality, nonlinearity, dynamics, etc. Therefore,

to give due treatment to the different modeling methodologies designed for dealing with

systems with different data characteristics, this book has been divided into seven parts.

Part 1 lays down the basic foundations of ML-assisted process and equipment condition

monitoring, and predictive maintenance. Part 2 provides in-detail presentation of classical

ML techniques for univariate signal monitoring. Different types of control charts and time-

series pattern matching methodologies are discussed. Part 3 is focused on the widely

popular multivariate statistical process monitoring (MSPM) techniques. Emphasis is paid to

both the fault detection and fault isolation/diagnosis aspects. Part 4 covers the process

monitoring applications of classical machine learning techniques such as k-NN, isolation

forests, support vector machines, etc. These techniques come in handy for processes that

cannot be satisfactorily handled via MSPM techniques. Part 5 navigates the world of artificial

neural networks (ANN) and studies the different ANN structures that are commonly employed

for fault detection and diagnosis in process industry. Part 6 focusses on vibration-based

monitoring of rotating machinery and Part 7 deals with prognostic techniques for predictive

maintenance applications.

This book attempts to cover a lot of concepts. Therefore, to avoid the book from getting bulky,

we have not included contents that are not directly relevant to PM/PdM and have already

been covered in detail in the first two books of the series. For example, ML fundamentals

related to cross-validation, regularization, noise removal, etc., are illustrated in great detail in

Book 1 of the series and not in this book.

Symbol notation

The following notation has been adopted in the book for representing different types of

variables:

- lower-case letters refer to vectors (𝑥 ∈ ℝ𝑚×1) and upper-case letters denote

matrices (𝑋 ∈ ℝ𝑛×𝑚)

- individual element of a vector and a matrix are denoted as 𝑥𝑗 and 𝑥𝑖𝑗, respectively.

- any ith vector in a dataset gets represented as subscripted lower-case letter (𝑥𝑖 ∈

ℝ𝑚×1)

Table of Contents

Part 1: Introduction and Fundamentals

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and
 Predictive Maintenance

1.1 Process Industry and ML-based Plant Health Management

-- What are process faults and abnormalities

1.2 Plant Health Management (PHM) Workflow

1.3 ML Modeling Landscape for Plant Health Management

1.4 ML Model Development Workflow

1.5 ML-based Plant Health Management Solution Deployment

Chapter 2: The Scripting Environment

2.1 Introduction to Python

2.2 Introduction to Spyder and Jupyter

2.3 Python Language: Basics

2.4 Scientific Computing Packages: Basics

-- Numpy, Pandas, Sklearn

Chapter 3: Exploratory Data Analysis: Getting to Know Your Data Well

3.1 Why Exploratory Data Analysis Matters

3.2 Nonlinearity Assessment Techniques

3.3 Gaussianity Assessment Techniques

3.4 Dynamics Assessment Techniques

3.5 Multimode Distribution Assessment Techniques

3.6 Data Characteristics Investigation of Tennessee Eastman Process Dataset

Chapter 4: Machine Learning for Plant Health Management:
 Workflow and Best Practices

4.1 ML Model Development Workflow

4.2 Data Selection

4.3 Data Pre-processing

-- Handling data imbalance

4.4 Model Evaluation

4.5 Model Tuning

Part 2: Univariate Signal Monitoring

Chapter 5: Control Charts for Statistical Process Control

5.1 Control Charts: Simple and Time-tested Process Monitoring Tools

5.2 Shewhart Charts: An Introduction

5.3 CUSUM Charts: An Introduction

5.4 EWMA Charts: An Introduction

5.5 Case Study: Monitoring Air Flow in an Aeration Tank

5.6 Pitfalls of Univariate Control Charts and Alternative Solutions

Chapter 6: Process Fault Detection via Time Series Pattern Matching

6.1 Time Series Anomalies and Pattern Matching

6.2 Fault Detection via Historical Pattern Search

6.3 Fault Detection via Discord Discovery

Part 3: Multivariate Statistical Process Monitoring

Chapter 7: Multivariate Statistical Process Monitoring for Linear and Steady-State
 Processes: Part 1

7.1 PCA: An Introduction

7.2 Fault Detection via PCA: Polymer Manufacturing Case Study

 -- Fault detection indices

7.3 Fault Isolation via Contribution Analysis for PCA

7.4 PLS: An Introduction

7.5 Fault Detection via PLS: Polyethylene Manufacturing Case Study

 -- Fault detection indices

7.6 Fault Isolation via Contribution Analysis for PLS

Chapter 8: Multivariate Statistical Process Monitoring for Linear and Steady-State
 Processes: Part 2

8.1 ICA: An Introduction

 -- Deciding the number of independent components

8.2 Fault Detection via ICA: Tennessee Eastman Process Case Study

 -- Fault detection indices

8.3 FDA: An Introduction

8.4 Fault Classification via ICA: Tennessee Eastman Process Case Study

Chapter 9: Multivariate Statistical Process Monitoring for Linear and Dynamic
 Processes

9.1 Dynamic PCA: An Introduction

9.2 DPCA-based Fault Detection

9.3 Dynamic PLS: An Introduction

9.4 Canonical Variate Analysis (CVA): An Introduction

9.5 Process Monitoring of Tennessee Eastman Process via CVA

Chapter 10: Multivariate Statistical Process Monitoring for Nonlinear
 Processes

10.1 Kernel PCA: An Introduction

10.2 Fault Detection using Kernel PCA

10.3 Kernel PLS: An Introduction

10.4 Fault Detection using Kernel PLS

Chapter 11: Process Monitoring of Multimode Processes

11.1 Need and Methods for Specialized Handling of Multimode Processes

11.2 Multimode Semiconductor Manufacturing dataset

11.3 K-means Clustering: An Introduction

11.4 Gaussian Mixture Modeling: An Introduction

 -- Deciding the number of clusters

11.5 Fault Detection via GMM: Semiconductor Manufacturing Case Study

Part 4: Classical Machine Learning Methods for Process Monitoring

Chapter 12: Support Vector Machines for Fault Detection

12.1 SVMs: An Introduction

 -- Hard margin vs soft margin classification

12.2 The Kernel Trick for Nonlinear Data

 -- Sklearn implementation of support vector classifier

12.3 SVDD: An Introduction

12.4 Fault Detection via SVDD: Semiconductor Manufacturing Case Study

Chapter 13: Decision Trees and Ensemble Learning for Fault Detection

13.1 Decision Trees: An Introduction

13.2 Random Forests: An Introduction

13.3 Fault Classification using Random Forests: Gas Boiler Case Study

13.4 Introduction to Ensemble Learning

 -- Bagging

 -- Boosting

13.5 Fault Classification using XGBoost: Gas Boiler Case Study

Chapter 14: Proximity-based Techniques for Fault Detection

14.1 KNN: An Introduction

 -- Application for fault detection for metal-etch process

14.2 LOF: An Introduction

 -- Application for fault detection for metal-etch process

14.3 Isolation Forest: An Introduction

 -- Application for fault detection for metal-etch process

Part 5: Artificial Neural Networks for Process Monitoring

Chapter 15: Fault Detection & Diagnosis via Supervised Artificial Neural
 Networks Modeling

15.1 ANN: An Introduction

15.2 Process Modeling via FFNN: Combined Cycle Power Plant Case Study

15.3 RNN: An Introduction

15.4 ANN-based External Analysis for Fault Detection in a Debutanizer Column

15.5 Fault Classification using ANNs

Chapter 16: Fault Detection & Diagnosis via Unsupervised Artificial Neural
 Networks Modeling

16.1 Autoencoders: An Introduction

 -- Dimensionality reduction via autoencoders

16.2 Process Monitoring using Autoencoders: FCCU Case Study

 -- Fault diagnosis via contribution plot

16.3 Self-Organizing Maps: An Introduction

 -- Evaluating SOM fit

16.4 Visualization of Semiconductor Dataset via SOM

16.5 Process Monitoring using SOM: Semiconductor Case Study

 -- fault diagnosis via contribution plot

Part 6: Vibration-based Condition Monitoring

Chapter 17: Vibration-based Condition Monitoring: Signal Processing and Feature
 Extraction

17.1 Vibration: A Gentle Introduction

17.2 Vibration-based Condition Monitoring: Workflow

17.3 Vibration Signal Processing

 -- Frequency domain analysis

 -- Time-frequency domain analysis

17.4 Feature Extraction from Vibration Signals

 -- Time domain features

 -- Frequency domain features

 -- Time-frequency domain features

Chapter 18: Vibration-based Condition Monitoring: Fault Detection &
 Diagnosis

18.1 VCM Workflow: Revisited

18.2 Classical VCM Approaches: A Quick Primer

18.3 Machine Learning-based VCM: Motor Fault Classification via SVM

Part 7: Predictive Maintenance

Chapter 19: Fault Prognosis: Concepts & Methodologies

19.1 Fault Prognosis: Introduction & Workflow

19.2 Machinery health Indicators: Introduction & Approaches

19.3 Health Indicator Construction Using Vibration Signals for a Wind Turbine

Chapter 20: Fault Prognosis: RUL Estimation

20.1 RUL: Revisited

20.2 Health Indicator-based RUL Estimation Strategies

 -- Health degradation modeling

 -- Trajectory similarity-based modeling

20.3 RUL Estimation via Degradation Modeling for a Wind Turbine

20.4 RUL Estimation via ANN-based Regression Modeling for a Gas Turbine

Part 1

Introduction & Fundamentals

1

Chapter 1
Machine Learning, Process and Equipment

Condition Monitoring, and Predictive

Maintenance: An Introduction

sk a plant manager about what gives him/her sleepless nights and you will invariably

get plant equipment failures and process abnormalities causing downtimes among the

top answers. Such concerns about plant reliability are not unfounded. Incipient

abnormalities, if left undetected, can cause cascading damages leading to economic losses,

plant downtimes, and even fatalities. Several major disasters in the process industry

(Philadelphia refinery explosion in 2019, Bhopal gas tragedy in 1984, etc.) were the results of

failures in timely detection and correction of process faults. While such disasters are

fortunately infrequent, ‘innocuous’ process abnormalities that lead to non-optimal plant

efficiencies and degradations in product quality occur routinely. Without exaggeration, it can

be said that 24X7 monitoring of process performance and plant equipment health status, and

forecast of impending failures are no longer a ‘nice to have’ but an absolute necessity!

Process industry has responded to the above challenges by putting more sensors and

collecting more real-time data. Unfortunately, this has led to data deluge and operators being

overwhelmed with ‘too much information but little insights’. Thankfully, machine learning

comes to the rescue with its ability to parse huge amount of data and find hidden patterns in

real-time. ML allows smart process monitoring (PM) wherein objective is not just to detect

process abnormalities but to catch the issues at early stages. Furthermore, ML facilitates

predictive maintenance (PdM) through advance prediction of equipment failure times.

In this chapter we will take a bird’s-eye view of the ML landscape for PM/PdM and understand

what it takes to achieve the above objectives. Specifically, the following topics are covered

• Introduction to process/equipment abnormalities and faults

• Typical workflow for ML-based process monitoring and predictive maintenance

• ML landscape for process monitoring and predictive maintenance

• Common PM/PdM solution deployment infrastructure employed in industry

Machine learning is a great tool, but it’s not magic; it still takes a lot ‘ML art’ to get the things

right. Let’s now take the first step towards mastering this art.

A

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|2

1.1 Process Industry and ML-based Plant Health

Management

Process industry is a parent term used to refer to industries like petrochemical, oil & gas,

chemical, power, paper, cement, pharmaceutical, etc. These industries use processing plants

to manufacture intermediate or final consumer products. As emphasized in Figure 1.1, the

prime concerns of the management of these plants include, amongst others, optimal and safe

operations, quality control, and high reliability through proactive process monitoring and

predictive maintenance. All these tasks fall under the ambit of process systems engineering

(PSE). While ML is being slowly incorporated in the PSE tasks (for example, deep learning-

based process controller1), ML has had the biggest influence on the tasks related to plant

health management, viz, fault detection, fault diagnosis, and predictive maintenance.

Figure 1.1: Overview of industries constituting process industry and the common PSE tasks

Figure 1.2 shows a sample process flowsheet with traditional measurements of flow,

temperature, pressure, level, composition, power, and vibration. Such complex and highly

integrated operations, tight product specifications, and the economic compulsion to push

processes to their limits are making industrial operations more prone to failures. Nonetheless,

there is an increasing trend to have unmanned or lean-staffed plants with less human eyes to

monitor the process. This is where automated plant health management comes into play to

resolve this dichotomy. Process models combined with sensor data are used for continuous

monitoring of processes to detect, isolate, and diagnose faults, and for predicting fault

1 https://www.aspentech.com/en/products/msc/aspen-dmc3

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|3

progression. The obvious gains are prevention of costly downtimes through better planned

maintenance. For developing process models, data-driven/ML models have become more

popular due to the relative ease of implementation and model maintenance compared to first

principle-based models.

Figure 1.2: A typical process flowsheet2 with flow (FI), temperature (TI), pressure (PI),

composition (Analyzers), level (LI), power (JI), vibration (VI) measurements.

Let’s continue learning about the ML-based plant health management by first taking a closer

look at the meaning of process faults and abnormalities.

What are process faults and abnormalities?

Colloquially speaking, process faults or abnormalities are unexpected and unfavorable

deviations/patterns in process variables that defy the normal/acceptable process behavior.

The deviations could be undesirable decreases in product yield and product purity,

fluctuations in critical liquid levels, rise in temperatures, increase in rotating machine

vibrations, etc. There are various causes of faults in process system including, amongst

others, fouling, pipe blockages, leaks, catalyst poisoning, and valve stiction. The flowsheet

below illustrates some common fault sources.

2 Adapted from the original flowsheet by Gilberto Xavier (https://github.com/gmxavier/TEP-meets-LSTM) provided under Creative-Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|4

Figure 1.3: Some common sources of process faults in a process plant

 Equipment monitoring vs plantwide monitoring

A common approach for process monitoring in process industry is to monitor the

different critical equipment of a plant separately. The ML models are built

separately for each equipment. While this approach makes ML model

development easier as each ML model handles only a subset of the plant

variables, one is left with having to maintain and analyze results from multiple

ML models. An alternative approach is plantwide monitoring wherein the whole

plant comprising of multiple equipment is monitored using a single ML model.

The downside of this approach is high dimensionality of the variable-set and

reduced fault detection performance. Same ML models can be employed for

either of the approaches. Nonetheless, some specialized techniques have been

devised for plantwide monitoring. We will remark upon these techniques as

suitable in the upcoming chapters.

Reduced catalyst activity

due to aging resulting in

lower product yield

Compressor motor bearing

damage due to cracks resulting

in high vibrations

 Sticky valve resulting in

flow spikes

Valve left in manual mode by

operators resulting in abnormal

reactor temperature

Unusual fluctuations in colling water

temperature leading to temperature

fluctuations in the system

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|5

As remarked before, faults entail unwanted deviations in process variables. Figure below

shows samples of data patterns that may be observed under the influence of process faults.

Figure 1.4: Sample of data patterns under faulty conditions

Figure 1.4 shows why automated fault detection is not a very straightforward activity. Under

normal plant operation, process variables do not remain at fixed values but show stochastic

fluctuations and normal variations due to changing plant load, product grade, ambient

conditions, etc. Therefore, one can’t just compare each process variable against some fixed

thresholds to ascertain the healthy state of the process. Modeling the multivariable

relationships among the plant variables become indispensable in most of the scenarios.

The takeaway message is that modern process plants are prone to multiple failures, and it

takes an ‘army’ to ensure reliable operations. In the industry 4.0 era, ML is being employed

as that ‘army’. Before we look at the different ML models available at our disposal, let’s try

and understand what exactly an ML model is expected to do.

Faulty variable operating at higher

mean value

Faulty variable experiences a drift

Faulty variable shows a drift but remains

within ‘normal operation range’
Faulty variable shows unusual spikes but

remains within ‘normal operation range’

Faulty variable shows unusual

stochastic fluctuations

Faulty variable shows ‘dead behavior’

due to dead sensor

Faulty operation period

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|6

1.2 Plant Health Management (PHM) Workflow

In the previous section we discussed in some detail the fault detection aspect of plant health

management. However, it is only a part of the journey towards reliable plant operation. Figure

1.5 shows the different milestones of the journey. As shown, fault detection is followed by fault

isolation or fault diagnosis wherein the objective is to identify the process variables that have

been affected by the fault or determine the underlying cause of the fault, respectively. For

example, for the valve malfunction problem illustrated in Figure 1.3, fault isolation pinpoints

the flow from the separator to the stripper as the faulty variable and fault diagnosis pinpoints

the valve stiction as the root cause of faulty behavior.

 FDI vs FDD

In the process monitoring literature, you will find the acronyms FDI and FDD

very often. FDI stands for fault detection and isolation, and FDD stands for fault

detection and diagnosis. As alluded to before, although fault diagnosis is

different from fault isolation, it is often used (incorrectly) to refer to the task of

finding variables showing abnormal behavior.

Other terms that you may encounter are fault identification and fault

classification. While fault identification is same as fault isolation, fault

classification refers to categorizing/classifying a fault into one of several pre-

defined fault types.

Following FDI/FDD, lies the task of fault prognosis which entails forecasting the progression

of the identified fault. Fault prognosis helps to determine the amount of time left before the

equipment affected by the fault needs to be taken out of service for maintenance or the whole

plant needs to be shutdown for fault repair. For equipment-level monitoring, fault prognosis

provides what is popularly known as remaining useful life (RUL). For example, for the

compressor bearing damage problem illustrated in Figure 1.3, the vibrations will only be

slightly higher than normal during the initial stages of crack development. However, with time

the crack grows leading to greater and greater vibrations, and ultimately the compressor fails

or becomes too dangerous to operate. A good fault prognostic model can accurately estimate

the time left until the failure point of compressor is reached.

The advancement in fault prognosis algorithms have popularized the concept of predictive

maintenance, wherein the plant management can plan well-in-advance the maintenance

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|7

schedule based on actual equipment/process health condition. As you can imagine, this

approach has obvious economic benefits (compared to time-based/preventive maintenance)

and, to nobody’s surprise, has caught fascination of process industry executives!

Figure 1.5: Plant health management workflow

 Prognostic and Health Management

In industrial community, the PM/PdM workflow shown in Figure 1.5 is commonly

called as prognostic and health management3. This includes both condition

monitoring (fault detection, isolation, and diagnosis) and predictive maintenance

(fault prognosis) aspects.

In the upcoming chapters, we will study in detail all the shown major aspects of PHM and

learn how to implement the end-to-end solutions.

.

3 Although the acronym ‘PHM’ is commonly used by the prognostic research community to refer to prognostic and health
management, we will use it to denote ‘plant health management’ in this book.

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|8

1.3 ML Modeling Landscape for Plant Health

Management

As process data scientists, we have to live with the harsh truth that there is no single

universally good model for all occasions. One reason for this is that process data can show

different characteristics (such as nonlinearity, non-Gaussianity, dynamics, multi-modality,

etc.) which necessitates selection of different modeling methodologies. Additionally, the

availability of historical faulty data, the user’s end goal, and the type of installed sensors can

also influence the model selection as shown in Figure 1.6. This makes the task of correct

selection of ML model daunting (and potentially overwhelming for beginner PDSs).

Fortunately, the recourse is open-secret and is as simple as having a good understanding of

your data and system, and conceptually sound knowledge of pros and cons of the available

methods.

Figure 1.6: Sample factors that influence ML model selection for PM/PdM

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|9

Before you embark upon modeling your process system, you would already have knowledge

of the various factors listed in the above figure, except possibly for the data characteristics.

We will study the techniques used to ascertain data characteristics in Chapter 3. Now that we

understand the factors that influence model selection, we are ready to see what models are

available at our disposal.

Traditional process measurements such as flow, temperature, pressure,

composition, etc., and vibration measurements dominate the signals recorded in

process industry. Therefore, case studies presented in this book use only these

signals. Computer vision-based ML solutions are not covered.

Figure 1.7 below shows the modeling methodologies for process monitoring that we will cover

in this book. Fault detection and diagnosis are precursors to fault prognosis and therefore the

same methodologies are employed for building predictive maintenance solutions as well. As

the category topics show, these methods cater to process data with different characteristics.

The methods range from ‘simple’ traditional control charts to modern deep learning.

Figure 1.7: Model tree for process monitoring

The category of MSPM (multivariate statistical process monitoring) methods (PCA, PLS,

GMM, etc.) deserves special attention as it has been the bedrock of health monitoring of

complex process plants. A large section of the book will therefore cater to these methods.

However, irrespective of their popularity, MSPM methods have shortcomings. Therefore,

machine learning and deep learning models like Autoencoders, LSTMs, LOFs are covered as

well.

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|10

In Figure 1.7, the modeling methodologies have been broadly divided into four categories, viz,

univariate statistical models, multivariate statistical models, classical machine learning

models, and artificial neural networks (ANN) models. Each of these categories are dealt with

in separate parts of the book. The statistical4 PM models extract a statistical model of the

system using past data. Within this category lies simple control-chart models that are used for

single variable monitoring. Though useful, these univariate models are understandably too

restrictive to handle plantwide monitoring of complex industrial plants. On the other end of the

model spectrum lies complex deep learning models that can theoretically handle any type of

process systems; the downside is cumbersome model training procedure and

hyperparameter optimization. In between these two extremes, lie the MSPM methods whose

ease of implementation and interpretable results have led to wide popularity. However, MSPM

methods tend to falter for highly nonlinear processes with complex data distributions.

Therefore, classical ML and deep learning methods have been receiving considerable

attention for process monitoring solution development for complex industrial processes.

The models in Figure 1.7 cater to the different scenarios that you may encounter in practice.

If you have abundant past faulty samples then classification models such as FDA, SVM, ANN,

etc. can be employed. However, in process industry, most of the time you will not have the

luxury of having past faulty data and therefore, many of the fault detection techniques covered

in this book cater to this scenario. The figure below illustrates the different principles employed

to detect the presence of process faults using only NOC data during model training.

4 In legacy process monitoring terminology, statistical process monitoring is also called statistical process control (SPC).
Although SPC methods do not involve any feedback to the process controllers, the word ‘control’ signifies the objective
of keeping the process ‘in-control’ through continuous monitoring.

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|11

Figure 1.8: Popular fault detection methodologies using only NOC data

Note that the models in Figure 1.7 are applicable to both equipment level monitoring and

plantwide monitoring. Let us now move to an overview of how these models are actually

developed.

Projection-based

Boundary around NOC samples

Distance from neighbors or local density-based

Input-output regression-based

NOC training samples

Fitted boundary

• Training data is assumed to provide adequate representation

of the region in the measurement space that NOC data are

expected to lie in.

• Methods like Hotelling’s T2 and SVDD can generate an

implicit boundary around the NOC samples and provide a

measure of how far a test sample lie from the NOC

boundary.

• Variables are categorized into predictor and response variables.

• A regression model (ANN, PLS, SVR, Random Forest, etc.) is

fitted to capture NOC behavior and prediction errors (or

residuals) are generated.

• The residuals are monitored (using control charts, PCA, etc.) to

detect the presence of faults.

• High-dimensional NOC data are assumed to lie along a lower-

dimensional latent space.

• Projection-based methods (such as PCA, ICA, KPCA, etc.) project

original test sample in the latent space.

• The position of test sample in latent space and its

reconstruction error are used to detect process fault.

Predictors

Measured response

Predicted response

• Distance of a test sample from the neighboring NOC samples is

used to infer its abnormality. KNN method can be used for this.

• Alternatively, local density in the region where the test sample

falls in can be used to classify the test sample as faulty or

normal. LOF method can be used for this.

NOC

NOC

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|12

1.4 ML Model Development Workflow

In Figure 1.7, we saw different types of ML models for PM applications. Fortunately, the

workflow for model development and deployment remains similar, and is shown in Figure 1.9.

As is typical for a ML project, the tasks can be categorized into offline computations and

online/real-time computations. In online computations, process data are parsed through the

model to provide real-time insights and results. The models are built offline using historical

process data. This offline exercise is performed once or repeated at regular intervals for model

update. Brief description of the essential steps performed are provided below:

➢ Exploratory data analysis: Exploratory data analysis (EDA) involves preliminary

investigation of data to get a ‘feel’ of the process dataset characteristics. The activities

may include assessment of the presence of nonlinear relationships among process

variables, non-Gaussian distribution, etc. Inferences made during EDA help make the

right model selection. EDA is covered in detail in Chapter 3.

Figure 1.9: Steps involved in a typical ML model development for process monitoring

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|13

➢ Sample and variable selection: One does not simply dump all the available historical

data and sensor measurements into a model training module. If a model is being built

to identify the normal process behavior, then care must be taken to include only

samples from fault-free operations in the model training dataset. Furthermore, if your

model does not handle dynamics then data from periods of process transitions should

be excluded.

Variable selection warrants judicious consideration as well. Inclusion of unnecessary

variables makes data noisier and reduces effectiveness of fault detection model. A

generic guidance is to include only those variables that can assist in early fault

detection; a variable that does not show any change in behavior under the influence of

process faults of interest should be excluded.

➢ Data pre-processing: “Garbage in, garbage out” is an age-old principle in computer

simulations. The same holds for ML model training for PHM. Your model will be

practically useless if training data is not ‘clean’. Your process monitoring model won’t

be able to detect process abnormalities accurately if it has been trained with outlier-

infested training data. Data pre-processing includes, amongst others, identification and

removal of outliers, noise reduction, transformation of variables, and extraction of

features. The overall objective of this step is to increase the ‘information content’ of

your training dataset so that the PM model’s ability to distinguish between normal and

faulty operations is bolstered. Several aspects of data pre-processing are dealt with in

Chapter 4.

➢ Model training and validation: Model training imply estimating the parameters of the

chosen ML model, for example, the neuron weights in an ANN model. Model validation

is employed for finding optimal values of model hyperparameters, for example, the

number of neurons in the ANN model. At the end of this step, the coveted process

model is obtained.

Additional activities related to computation of health indicator and subsequent RUL estimation

involved in fault prognosis are covered in Part 7 of the book which deals specifically with

prognostic techniques for predictive maintenance applications.

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|14

1.5 ML-based Plant Health Management Solution

Deployment

After you have developed a satisfactory PHM model, the real test of your solution lies in how

well it is received by the end-users. The end-users could be reliability personnel/engineers at

the local plant sites or the central team of experts remotely supervising the plants. Figure 1.10

below shows a (simplified) common architecture for bringing your tool’s results to these end-

users. As shown, the ML model could be setup to run on local PCs at every site or a central

server machine/cloud resource5. Plant operators may access the tool’s results on the local

control-room screens or via web browsers in case of centralized deployment. The web user

interface could be either built using third-party visualization software (Tableau, Sisense,

Power BI, etc.) or completely custom-built using front-end web frameworks like bootstrap.

Figure 1.10: ML solution deployment

That is all it takes to deploy a ML-based PHM solution in a production environment. This

concludes our quick attempt to impress upon you the importance of process monitoring and

predictive maintenance in process industry. Hopefully, you also now have a good idea of what

resources you have to achieve your PM/PdM goals and what is takes to build a PM/PdM

solution.

5 There exists a specialized branch of machine learning engineering, called MLOps (short for machine learning operations)
that deals with reliable and scalable deployment of ML models in production.

Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction

MLforPSE.com|15

 Summary

In this chapter, we looked at the importance of plant health management for increasing

process safety, reducing downtime costs, and increasing equipment life. We understood the

meaning of process faults and abnormalities. We looked at the different stages of plant health

management, familiarized ourselves with the factors that influence model selection, and

looked at the different models available at our disposal to achieve the PHM goals. We also

briefly looked at the generic workflow for process monitoring model development and

understood how PM/PdM solutions are deployed in modern industrial settings. In the next

chapter, we will take the first step and learn about the environment we will use to execute our

Python scripts containing ML code for PHM.

Chapter 2: The Scripting Environment

MLforPSE.com|16

Chapter 2
The Scripting Environment

n the previous chapter, we studied the various aspects of machine learning-based process

monitoring and predictive maintenance. In this chapter, we will quickly familiarize ourselves

with the Python language and the scripting environment that we will use to write ML codes,

execute them, and see results. This chapter won’t make you an expert in Python but will give

you enough understanding of the language to get you started and help understand the several

in-chapter code implementations in the upcoming chapters. If you already know the basics of

Python, have a preferred code editor, and know the general structure of a typical ML script,

then you can skip to Chapter 3.

The ease of using and learning Python, along with the availability of a plethora of open-access

useful packages developed by the user-community over the years, has led to immense

popularity of Python. In recent years, development of specialized libraries for machine and

deep learning has made Python the default language of choice among ML community. These

advancements have greatly lowered the entry barrier into the world of machine learning for

new users.

With this chapter, you are putting your first foot into the ML world. Specifically, the following

topics are covered

• Introduction to Python language

• Introduction to Spyder and Jupyter, two popular code editors

• Overview of Python data structures and scientific computing libraries

I

Chapter 2: The Scripting Environment

MLforPSE.com|17

2.1 Introduction to Python

In simple terms, Python is a high-level general-purpose computer programming language that

can be used, amongst others, for application development and scientific computing. If you

have used other computer languages like Visual Basic, C#, C++, Java, Javascript, then you

would understand the fact that Python is an interpreted and dynamic language. If not, then

think of Python as just another name in the list of computer programming languages. What is

more important is that Python offers several features that sets it apart from the rest of the pack

making it the most preferred language for machine learning. Figure 2.1 lists some of these

features. Python provides all the tools to conveniently carry out all steps of an ML-based

PM/PdM project, namely, data collection, data pre-processing, data exploration, ML modeling,

visualization, and solution deployment to end-users. In addition, several freely available tools

make writing Python code very easy6.

Figure 2.1: Features contributing to Python language’s popularity

Installing Python

One can download official and the latest version of Python from the python.com website.

However, the most convenient way to install and use Python is to install Anaconda

(www.anaconda.com) which is an open-source distribution of Python. Along with the core

Python, Anaconda installs a lot of other useful packages. Anaconda comes with a GUI called

Anaconda Navigator (Figure 2.2) from where you can launch several other tools.

6 Most of the content of this chapter is like that of Chapter 2 of the book ‘Machine Learning in Python for Process Systems
Engineering’ and have been re-produced with appropriate changes to maintain standalone nature of this book.

Chapter 2: The Scripting Environment

MLforPSE.com|18

Rest of the Chapter 2 not shown in this preview

19

Chapter 3
Exploratory Data Analysis: Getting to Know

Your Data Better

etting to know your enemy is a time-tested strategy for emerging victorious in any

battle. For developing a satisfactory process monitoring model, this strategy

translates to ‘knowing your process data well’. This task is formally termed as

exploratory data analysis (EDA). Most of the machine learning models make some

assumptions regarding the distribution (e.g., Gaussian vs uniform distribution) and

characteristics (e.g., dynamic vs steady state nature) of the data they operate upon.

Therefore, it only serves us well investing some time in EDA so that the consistency between

our chosen model’s assumptions and the characteristics of process data at hand can be

ascertained. Failure to do so will lead to high rate of false alerts and/or missed/delayed fault

detection which will most likely lead to ‘death’ of your monitoring tool due to loss of user

confidence!

In this chapter, we will learn how to assess the presence of four important properties in a

dataset, viz, nonlinearity, non-Gaussianity, dynamics, and multimodality. We will motivate the

study of these properties by understanding their impact on process monitoring performance.

We will especially focus on techniques that render themselves convenient for implementation

in an automated setting. As is obvious, the concepts learnt in this chapter will help you get

better at correct model selection. Specifically, the following topics are covered

• Impact of non-ideal data properties on fault detection performance

• Techniques for assessing nonlinearity, non-Gaussianity, dynamic, and multimodality

• EDA of Tennessee Eastman Process dataset

G

Chapter 3: Exploratory Data Analysis: Getting to Know Your Data Better

MLforPSE.com|20

3.1 Why Exploratory Data Analysis Matters?

Ask any expert process data scientist about some advice to get better at ML model selection

and you will very likely get the suggestions to understand your data better. It’s true, you cannot

over-exaggerate the importance of gathering as many insights about the data as possible

before getting your hands dirty. Most of the process monitoring methodologies make

assumptions about the data characteristics and therefore, it is imperative to ascertain these

characteristics in our process data to ensure selection of appropriate monitoring model. Let’s

consider the classical PCA model (inarguably the most popular model for monitoring

multivariate industrial processes): the ideal dataset is linear, Gaussian distributed, single-

clustered, and with no dynamics; Figure 3.1 uses simple datasets to illustrate what the

deviations from these ideal characteristics look like.

Figure 3.1: Illustration of deviations from ideal process data characteristics

To further motivate the discussions in the rest of the chapter, let’s take a quick look at the

impacts the non-ideal data characteristics can have on PCA performance.

Effect of nonlinearity

In an ideal PCA-compatible dataset, the variables are linearly related which allows the

standard PCA method to find the lower-dimensional manifold along which the data is

distributed. However, as can be seen below, PCA fails to transform the original 2D dataset to

a 1D feature space even though it is apparent that the original data points lie along a curved

manifold. This severely limits the ability of standard PCA to detect faulty samples.

Deviations

from ideal

process data

characteristic

𝑥1

𝑥2 𝑥3

𝑥2 𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥1

𝑡

𝐴𝐶𝐹

Chapter 3: Exploratory Data Analysis: Getting to Know Your Data Better

MLforPSE.com|21

Rest of the Chapter 3 not shown in this preview

22

Chapter 4
Machine Learning for Plant Health

Management: Workflow and Best Practices

hether you are building a ML solution for fault detection, fault classification, or fault

prognosis, model development is the most critical task. Inarguably, obtaining a good

ML model is not a trivial task. You cannot obtain a good model by just dumping all

the available raw data in an off-the-shelf machine learning module. Incorrectly specify one

hyperparameter and your model will return garbage results; provide insufficiently ‘rich’ training

dataset and even the most carefully chosen ML model will prove incapable of providing

meaningful insights. Unfortunately, an automated procedure for ML model development that

works for all types of problems does not exist. Nonetheless, there is no cause for despair. The

trick to successful model development lies in being actively involved in the several model

development stages and making use of several useful guidelines that the ML community has

come up with over the years. We already saw in the previous chapter the importance of

acquiring a good understanding of data for correct model selection. In this chapter, we will

learn several other guidelines and the best practices.

We will not cover the best practices associated with generic machine learning workflow.

Concepts like feature extraction, feature engineering, cross-validation, regularization, etc.,

have already been covered in detail in our first book of the series. Albeit we will touch upon

topics that are specific to plant health management applications. In this chapter, our focus will

be on aspects that you should not ignore to ensure that you are not unknowingly setting your

model up for failure. Specifically, we will cover these topics

• ML model development workflow

• Data selection and pre-processing to obtain good training dataset

• Assessment of monitoring performance

• Best practices for model selection and tuning

W

Chapter 4: Machine Learning for Plant Health Management: Workflow and Best Practices

MLforPSE.com|23

4.1 ML Model Development Workflow

The prime objective of the ML modeling task for building process modeling solutions is to

obtain a model that provide high fault sensitivity (i.e., the model is able to detect process faults

in incipient stages) and low false alarm rate (i.e., the model does not report a process fault

when process is operating normally). Balancing the trade-off between these two requirements

is not easy and requires careful attention to varied aspects during model development. It

definitely takes more than just executing a ‘model = <some ML_model>.fit()’ command on the

available data. In Chapter 1, we saw an overview of the typical steps involved in a ML model

development exercise. In this chapter, we will look at the different components of the workflow

in more details. Figure 4.1 lists the subtasks that we will touch upon. While separate books

can be written on each of these subtasks, we will focus on the aspects that may get overlooked

by an inexperienced process data scientist.

Figure 4.1: ML model development workflow

Data Collection

Exploratory Data

Analysis

Data Pre-processing

Model Selection &

Training

Model performance

assessment

Model Tuning

• Nonlinearity check
• Non-Gaussianity check

• Multimodality check
• Dynamics check

• Training dataset representative of process conditions to be monitored
• Inclusion of past faulty data
• Judicious selection of variables

• Data balancing
• Noise and outlier removal
• Feature engineering and extraction

• ANN models
• Multivariate statistical models
• Proximity-based models

• Clustering models
• Machine learning models

• Accuracy
• Recall, precision, F1 score, FDR, FAR
• ROC curve, AUC

• Hyper-parameter optimization via cross-validation
• Overfitting vs underfitting

PHM

Model

Chapter 4: Machine Learning for Plant Health Management: Workflow and Best Practices

MLforPSE.com|24

Rest of the Chapter 4 not shown in this preview

MLforPSE.com|25

Part 2

Univariate Signal Monitoring

26

Chapter 5
Control Charts for Statistical Process Control

efore machine learning engulfed the process industry, simple plotting of key plant

variables with statistically chosen upper and lower thresholds used to be the norm for

detecting process abnormalities. These plots, called control charts, formed the major

component of statistical process control or statistical quality control. Although control charts

have lost some of their shine due to the advent of advanced multivariate process monitoring

tools, they are still widely employed by plant management to monitor crucial KPIs, for

example, product quality, process efficiency, etc. Simple concept, easy interpretation, and

quick implementation are some of the reasons for their continued popularity.

Shewhart charts (which includes the popular 3-sigma charts) are the earliest, simplest, and

most commonly used control charts. These, however, show poor performance for detection

of faults that cause small deviations. Therefore, alternatives such as CUSUM charts and

EWMA charts have been devised. In this chapter, we will learn these techniques and become

familiar with how to implement them in practice. We will conclude with some discussion on

the ways to overcome the shortcomings of univariate control charts. Specifically, the following

topics are covered.

• Introduction to Shewhart control charts

• Introduction to CUSUM control charts

• Introduction to EWMA control charts

• Statistical process control of aeration tank via CUSUM chart

• Strategies for overcoming limitations of univariate statistical process control

B

Chapter 5: Control Charts for Statistical Process Control

MLforPSE.com|27

5.1 Control Charts: Simple and Time-tested Process

Monitoring Tools

Control charts are one of the seven7 pillars of statistical process control that are traditionally

used to monitor key production or product quality metrics in order to detect unexpected

deviations. When the process is ‘in-control’, the monitored variables are expected to exhibit

only natural cause variations around some target or mean values. As shown in Figure 5.1, a

control chart is simply a display of measurements of a single process variable plotted against

time or sample number. Additionally, these charts include a centerline or the expected mean

value, and a couple of limit lines called UCL (upper control limit) and LCL (lower control limit).

Most industrial process variables show natural variations due to random disturbances

affecting the process. The control limits are statistically designed in such a way that under

natural cause variations, the monitored variable remains within the control limits with certain

desired probability. The breach of the control limits indicates potential process fault or an ‘out-

of-control’ situation. Proper specification of the limits is therefore essential to ensure minimal

false alarms and rapid detection of faults.

Figure 5.1: Representative control chart for product purity

The traditional control charts take three different forms, viz, Shewhart charts, CUSUM charts,

and EWMA charts. While a Shewhart chart plots only the current measurements on the control

chart, the other two plot some combination of current and past measurements. You will soon

learn how usage of past measurements allow detection of incipient or low magnitude faults

which may not get detected by Shewhart charts. Control charts are not limited to tracking

process measurements only; any metric that is expected to exhibit only random fluctuations

around some mean or target can be monitored via control charts. Correspondingly, control

charts are also employed for monitoring model residuals, latent variables (for example, in

PCA), etc. Let’s first get started with Shewhart charts.

7 https://asq.org/quality-resources/statistical-process-control

Product purity control chart

Chapter 5: Control Charts for Statistical Process Control

MLforPSE.com|28

Rest of the Chapter 5 not shown in this preview

29

Chapter 6
Process Fault Detection via Time Series

Pattern Matching

magine you are a plant operator newly put in charge of running a plant and you observe

an interesting pattern in one of the process variable: occasional spikey fluctuations without

the signal violating the DCS alarm limits. A natural line of investigation would be to find if

such patterns have occurred in the past and are a leading indicators of underlying process

faults. However, how do you quickly sift through years of historical data to find similar

patterns? Consider another scenario where you are responsible for quality control of a batch

process. To check if the latest batch went smoothly, you may want to compare it with known

reference/golden batch. However, batches may show normal variations due to different batch

durations or abnormal deviations due to process fault. How do you train an algorithm to

smartly call out a faulty batch? One thing common in both these scenarios is that we are not

looking at abnormality of a single measurement; instead, abnormality of a sequence of

successive values (also called collective anomalies) is of interest.

Time series pattern matching is a mature field in the area of time series classification and

recent algorithmic advances now allow very fast sequence comparisons to find similar or

abnormal patterns in historical data. Unsurprisingly, pattern matching is being offered as prime

feature in commercial process data analytic software (such as Aspen’s Process Explorer,

SEEQ, etc.). In this chapter, we will work through some use-cases of pattern-matching-based

process monitoring. Specifically, the following topics are covered

• Introduction to time series anomalies

• Pattern matching-based fault detection: use-cases in process industry

• Fault detection via historical pattern search for steam generator process

• Fault detection via discord discovery

I

Chapter 6: Process Fault Detection via Time-Series Pattern Matching

MLforPSE.com|30

6.1 Time Series Anomalies and Pattern Matching

In anomaly detection literature, anomalies in univariate time series or dynamic signals are

categorized into three categories: point anomalies, contextual anomalies, and collective

anomalies. Figure 6.1 illustrates these anomalies for a valve (%) opening signal. As depicted

in Figure 6.1b, if a single measurement deviates significantly from the rest of the sensor

readings, then a point anomaly is said to have occurred. Contextual anomaly occurs when a

measurement is not anomalous in an ‘overall sense’ but only in a specific context. For

example, in Figure 6.1c, point ‘B’ is abnormal when taken in the context of operation mode 1

only; valve opening goes close to 80% under normal operation but not when the process is in

mode 1. The last category of collective anomaly occurs when a group/sequence of successive

measurements jointly show abnormal behavior, although the individual measurements may

not violate NOC range. While control charts can be built to detect point and contextual

anomalies, more specialized approaches are needed to detect collective anomalies.

Therefore, this chapter is devoted to study of approaches for collective anomaly detection.

Figure 6.1: Time series anomalies: representative illustrations

The need for (sub) sequence-based pattern matching for FDD show up in different forms in

process industry; Figure 6.2 illustrates some of the use-case scenarios. Let’s work through

some of these use-cases to understand the underlying techniques and available resources.

Normal conditions

(a) (b)

(c) (d)

Point anomaly A

B
Contextual anomaly Collective anomaly

Mode 1 Mode 2

Chapter 6: Process Fault Detection via Time-Series Pattern Matching

MLforPSE.com|31

Figure 6.2: Sample use-case scenarios of time series pattern matching-based fault detection

We will work through the case scenarios (a) and (c). Both of these use-cases involve finding

similarity of a ‘query’ subsequence with several other subsequences taken from the same

time series or another time series. In order to accomplish this in a time-efficient manner, a

library called STUMPY8 will be utilized. Let’s learn how to utilize STUMPY for our time series

data mining tasks.

8 https://stumpy.readthedocs.io/en/latest/index.html.
S.M. Law, STUMPY: A Powerful and Scalable Python Library for Time Series Data Mining. Journal of Open Source
Software, 2019.

(c) (d)

➢ Pattern in last 0.5 hour

➢ Is this pattern associated with

any faulty condition?

(a)

➢ In the last 1 day of operation,

has any pattern occurred that

is very different compared to

the rest of the data?

➢ Has my plant start-up

progressed normally?

---- Standard start-up profile

---- Current start-up profile

➢ Does any adsorber bed’s

pressure profile differs from

those of the rest of the beds ?

--- Adsorbed bed A --- Adsorbed bed B --- Adsorbed bed C

---- Adsorbed bed D

Chapter 6: Process Fault Detection via Time-Series Pattern Matching

MLforPSE.com|32

Rest of the Chapter 6 not shown in this preview

33

Part 3

Multivariate Statistical Process Monitoring

34

Chapter 7
Multivariate Statistical Process Monitoring for

Linear and Steady-State Processes: Part 1

t is not uncommon to have hundreds of process relevant variables being measured at

manufacturing facilities. However, conservation laws such as mass balances,

thermodynamics constraints, enforced product specifications, and other operational

restrictions induce correlations among the process variables and make it appear as if the

measured variables are all derived from a small number of hidden (un-measured) variables.

Several smart techniques have been derived to find these hidden latent variables. Latent

variable-based techniques allow characterization of ‘normal’ process noise affecting the

process during NOC. Process monitoring methods based on latent space monitor the values

of latent variables and process noise in real-time to infer the presence of process faults.

Sounds complicated? Don’t worry! This chapter will show you how this is accomplished while

retaining focus on conceptual understanding and practical implementation.

PCA and PLS are among the most popular latent variable-based process monitoring tools

and have been reported in several successful industrial process monitoring applications. This

chapter provides a comprehensive exposition of the PCA and PLS techniques and teaches

you how to apply them for fault detection. Furthermore, we will learn how to identify the faulty

process variable using the popular contribution analysis methodology. Specifically, the

following topics are covered

• Introduction to PCA and PLS

• Process fault detection via PCA and PLS

• Fault isolation in PCA- and PLS-based process monitoring applications

• Process monitoring of polymer manufacturing process via PCA

• Process monitoring of polyethylene manufacturing process via PLS

I

Chapter 7: Multivariate Statistical Process Monitoring for Linear and Steady-State Processes: Part 1

MLforPSE.com|35

7.1 PCA: An Introduction

 Principal component analysis (PCA), in essence, is a multivariate technique that transforms

a high-dimensional set of correlated variables into a low-dimensional set of uncorrelated

(latent) variables with minimum loss of information. Consider the 3-dimensional data in Figure

7.1. It is apparent that although the data is three dimensional, the data-points mostly lie along

a 2-D plane; and even in this plane, the spread is much higher along a particular direction.

PCA converts the original (x,y,z) space into a 2-D principal component (PC) space where the

1st PC (PC1) corresponds to the direction of maximum spread/variance in data and the 2nd

PC (PC2) corresponds to the direction with highest variance among all directions orthogonal

to 1st PC. Depending upon modeling requirements, even the 2nd PC may be discarded,

essentially obtaining a 1-D data while losing out some information. Also, as we will see soon,

it is straightforward to recover original data from data in PC space.

Figure 7.1: PCA illustration

In ML world, it is common to find applications of classification and clustering techniques in the

PC space. In process industry, process modeling (via principal component regression (PCR))

and monitoring are common application of PCA9. PCA is also frequently utilized for process

visualization. For many applications, two or three PCs are adequate for capturing most of the

variability in process data and therefore, the compressed process data can be visualized

within a single plot. Plant operators and engineers use this single plot to find past and current

patterns in process data. PCA-based fault detection goes further and compresses all the

information in the PC space and the process noise into a couple of control charts. You will

soon learn how to generate and use these control charts.

9 The popularity of latent-variable techniques for process control and monitoring arose from the pioneering work by John
McGregor at McMaster University.

Chapter 7: Multivariate Statistical Process Monitoring for Linear and Steady-State Processes: Part 1

MLforPSE.com|36

Rest of the Chapter 7 not shown in this preview

37

Chapter 8
Multivariate Statistical Process Monitoring for

Linear and Steady-State Processes: Part 2

y now you must be very impressed with the powerful capabilities of PCA and PLS

techniques. These methods allowed us to extract latent variables and monitor

systematic variations in latent space and process noise separately. However, you may

ask, “Are these the best latent variable-based techniques to use for all problems?”. We are

glad that you asked! Other powerful methods do exist which may be better suited in certain

scenarios. For example, independent component analysis (ICA) is preferable over PCA when

process data is not Gaussian distributed. It can provide latent variables with stricter property

of statistical independence rather than only uncorrelatedness. Independent components may

be able to characterize the process data better than principal components and thus may result

in better monitoring performance.

In another scenario, if your end goal is to classify process faults into different categories for

fault diagnosis, then, maximal separation between data from different classes of faults would

be your primary concern rather than maximal capture of data variance. Fisher discriminant

analysis (FDA) is preferred for such tasks.

In this chapter, we will learn in detail the properties of ICA and FDA. We will apply these

methods for process monitoring and fault classification for a large-scale chemical plant.

Specifically, the following topics are covered

• Introduction to ICA

• Process monitoring of non-Gaussian processes

• Introduction to FDA

• Fault classification for large scale processes.

B

Chapter 8: Multivariate Statistical Process Monitoring for Linear and Steady-State Processes: Part 2

MLforPSE.com|38

8.1 ICA: An Introduction

Independent Component Analysis (ICA) is a multivariate technique for transforming measured

variables into statistically independent latent variables in a lower-dimensional space.

Statistical independence is a stricter condition than uncorrelatedness and in some situations,

working with independent components (ICs) can give better results than working with

uncorrelated PCs from PCA. While ICA and PCA are related (in the sense that latent variables

are linear projections of measured variables), they differ in the way the latent variables are

extracted. Figure 8.1 highlights the difference between them using a simple illustration where

two independent signals are linearly combined to generate correlated signals and then

PCA/ICA are used to extract latent signals. It is apparent that simply decorrelating the signals

via PCA did not recover the original signals. On the other hand, ICA reconstructs the original

signals accurately10.

Figure 8.1: Simple illustration of ICA vs PCA. The arrows in the x1 vs x2 plot show the direction

vectors of corresponding components. Note that the signals t1 and t2 are not independent as

value of one variable influences the range of values of the other variable.

ICA uses higher-order statistics for latent variable extractions, instead of only second order

statistics (mean, variance/covariance) as done by PCA. Therefore, for non-Gaussian

10 If you observe closely, you will find that ICA latent signals (u1 and u2) do differ from s1 and s2 signals in terms of sign
and magnitude; we will soon learn why this happens and why this is not a cause of worry.

Chapter 8: Multivariate Statistical Process Monitoring for Linear and Steady-State Processes: Part 2

MLforPSE.com|39

Rest of the Chapter 8 not shown in this preview

40

Chapter 9
Multivariate Statistical Process Monitoring for

Linear and Dynamic Processes

n the previous chapters, we saw how beautifully latent variable-based MSPM techniques

can extract hidden steady-state relationships from data. However, we imposed a major

restriction of absence of dynamics in the dataset. Unfortunately, it is common to have to

deal with industrial datasets that exhibit significant dynamics and the standard MSPM

techniques fail in extracting dynamic relationships among process variables. Nonetheless, the

MSPM research community came up with a simple but ingenious modification to the standard

MSPM techniques that made working with dynamic dataset very easy. The trick entails

including the past measurements as additional process variables. That’s it! The standard

techniques can then be employed on the augmented dataset. The dynamic variants of the

standard MSPM techniques are dynamic PCA (DPCA), dynamic PLS (DPLS), dynamic ICA

(DICA), etc.

Dynamic PCA and dynamic PLS are among the most popular techniques for monitoring linear

and dynamic processes; accordingly, these are covered in detail in this chapter. Additionally,

this chapter also introduces another very popular and powerful technique that is specially

designed to extract dynamic relationships from process data – canonical variate analysis

(CVA). Using numerical and industrial-scale case studies, we will see how to use these three

techniques to build fault detection tools. Specifically, the following topics are covered

• Introduction to dynamic PCA

• Fault detection using DPCA

• Introduction to dynamic PLS

• Introduction to CVA

• Fault detection using CVA for Tennessee Eastman process

I

Chapter 9: Multivariate Statistical Process Monitoring for Linear and Dynamic Processes

MLforPSE.com|41

9.1 Dynamic PCA: An Introduction

Dynamic PCA is the dynamic extension of conventional PCA designed to handle process data

that exhibit significant dynamics. DPCA simply entails application of conventional PCA to

augmented data matrix which, as shown in Figure 9.1, is generated by using past

measurements as additional process variables. Note that each ‘variable’ of the augmented

matrix is normalized to zero mean and unit variance as is done in conventional PCA. It may

seem surprising, but such a simple approach has achieved great success in process industry

and has been readily adopted due to ease of implementation.

Figure 9.1: Dynamic PCA procedure [l denotes the number of lags used]

All the mathematical expressions for the computations of the score matrix11, residual matrix,

Hotelling’s T2, and SPE remain the same (Eq. 1 to Eq. 8) as that shown in Chapter 7, except

that now you will be using scaled Xaug instead of X, i.e., 𝑇 = 𝑋𝑎𝑢𝑔𝑃; 𝐸 = 𝑋𝑎𝑢𝑔 − �̂�𝑎𝑢𝑔. The

procedure for determination of number of retained latent variables also remains the same.

You may, amongst other approaches, look for a ‘knee’ in the scree plot of the explained

variance or use the cumulative percent variance approach. If you choose ‘l’ correctly, then

both the static and dynamic relationships among process variables are captured and

correspondingly, the residuals and the Q statistic will not exhibit autocorrelations12. For test

dataset, you would again simply perform augmentation with time-lagged measurements.

Before we get into the nitty-gritties, let’s see a quick motivating example on why DPCA is

superior to PCA in the presence of dynamics.

11 The number of retained principal components in DPCA could be greater than m.
12 The DPCA scores can show autocorrelations.

Conventional PCA

DPCA Model

Chapter 9: Multivariate Statistical Process Monitoring for Linear and Dynamic Processes

MLforPSE.com|42

Example 9.1:

To illustrate how DPCA can extract dynamic relationships, let’s consider the following

noise-free dynamic system.

The number of zero singular (eigen) values extracted during PCA indicates the number

of linear relationships that exist among the process variables. Let’s see if we can extract

out the above dynamic relationship using only data (1000 samples of x1 and x2).

𝑥1ሺ𝑘ሻ = 0.8𝑥1ሺ𝑘 − 1ሻ + 𝑥2ሺ𝑘 − 1ሻ; k is sampling instant

import required packages

import numpy as np, matplotlib.pyplot as plt

from sklearn.decomposition import PCA

generate data for the system: x1(k) = 0.8*x1(k-1) + x2(k-1)

x2 = np.random.normal(loc=0, scale=1, size=(1000,1))

x1 = np.zeros((1000,1))

for k in range(1,1000):

 x1[k] = 0.8*x1[k-1] + x2[k-1]

X = np.hstack((x1, x2))

function to generate augmented matrix

def augment(X, n_lags):

 N, m = X.shape

 X_aug = np.zeros((N-n_lags, (n_lags+1)*m))

 for sample in range(n_lags, N):

 XBlock = X[sample-n_lags:sample+1,:]

 X_aug[sample-n_lags,:] = np.reshape(XBlock, (1,-1), order = 'F')

 return X_aug

fit DPCA model

X_aug = augment(X, 1) # augment data

X_aug_centered = X_aug - np.mean(X_aug, axis=0) # center data

dpca = PCA().fit(X_aug_centered) # fit PCA model

print('DPCA singular values:', dpca.singular_values_) # get singular values

>>> DPCA singular values: [6.664e+01 3.731e+01 3.094e+01 1.1661e-14]

As expected, only one singular value is very close to zero. All we now need to do is fetch

the singular vector corresponding to this singular value and check if it represents our

dynamic system.

Chapter 9: Multivariate Statistical Process Monitoring for Linear and Dynamic Processes

MLforPSE.com|43

get 4th singular vector

print('4th singular vector: ', dpca.components_[3,:])

>>> 4th singular vector: [4.923e-01 -6.154e-01 6.154e-01 1.7348e-17]

The 4th singular vector represents the following relation

0.4923𝑥1ሺ𝑘 − 1ሻ − 0.6154 𝑥1ሺ𝑘ሻ + 0.6154𝑥2ሺ𝑘ሻ = 0
 ⇒ 𝑥1ሺ𝑘ሻ = 0.8𝑥1ሺ𝑘 − 1ሻ + 𝑥2ሺ𝑘 − 1ሻ

Voila! DPCA has successfully extracted the underlying process dynamics. PCA on the

other hand does not reveal any relationship between the variables.

Rest of the Chapter 9 not shown in this preview

44

Chapter 10
Multivariate Statistical Process Monitoring for

Nonlinear Processes

n the previous chapters, we saw how a simple trick of using time-lagged variables enabled

application of conventional MSPM techniques to dynamic processes. You may wonder if

anything similar exists for nonlinear processes. Fortunately, it does! The underlying

principle is to project the original variables onto a high-dimensional feature space where

features are linearly related. The challenging part is the determination of the nonlinear

mapping from the original measurement space to the feature space This is where a ‘kernel’

trick comes into picture wherein data gets projected without the need to explicitly define the

nonlinear mapping. Conventional MSPM is then employed in the feature space. Sounds

complicated? Once you are done with this chapter, you will realize that it’s much easier than

it may seem to you right now.

The main advantage of kernel-based MSPM techniques (KPCA, KPLS, KICA, KFDA, etc.) is

that they do not require nonlinear optimization and only linear algebra is involved.

Unsurprisingly, kernelized methods have become very attractive for dealing with nonlinear

datasets while retaining the simplicity of their linear counterparts. Among the kernel MSPM

techniques, kernel PCA and kernel PLS are the most widely adopted, have found

considerable successes in process monitoring applications, and therefore will be the focus of

our study in this chapter. Specifically, the following topics are covered

• Introduction to kernel PCA

• Fault detection using kernel PCA

• Introduction to kernel PLS

• Fault detection using kernel PLS

I

Chapter 10: Multivariate Statistical Process Monitoring for Nonlinear Processes

MLforPSE.com|45

10.1 Kernel PCA: An Introduction

Kernel PCA is the nonlinear extension of conventional PCA suitable for handling processes

that exhibit significant nonlinearity. To understand the motivation behind KPCA, consider the

simple scenarios illustrated in Figure 10.1. In Figure 10.1a, we can see that the data lie along

a line which can be obtained from the first eigenvector of linear PCA. In Figure 10.1b, data lie

along a curve; conventional PCA cannot help to find this nonlinear curve. Correspondingly,

PCA fails to detect the obvious outlier. However, all is not lost for the latter scenario. Instead

of working in the (x1, x2) measurement space, if we work in the ሺ𝑧1, 𝑧2ሻ = ሺ𝑥1
4, 𝑥2ሻ feature

space, then we end up with linearly related features and the abnormal data point can be

flagged as such. Unfortunately, the task of finding such (nonlinear) mapping that maps raw

data to feature variables is not trivial. Thankfully, there is something called ‘kernel trick’ that

allows you to work in the feature space without having to define the nonlinear mapping. We

will learn how this is accomplished in the next section.

Figure 10.1: Nonlinearity impact on PCA-fault detection. Faulty sample shown in red. [One principal

component chosen in all simulations]

KPCA can work with arbitrary data distributions. As far as process monitoring applications are

concerned, KPCA can help you create an abnormality boundary around your NOC data as

shown below.

To understand how KPCA works, let’s revisit the mathematical underpinnings of PCA.

(a) (b)

NOC sample
NOC boundary

Chapter 10: Multivariate Statistical Process Monitoring for Nonlinear Processes

MLforPSE.com|46

Kernel functions and kernel trick

Usage of kernel trick is not limited to KPCA and KPLS. Other ML techniques such as

SVM, CVA, etc., also use kernel functions to model nonlinear processes. So, what are

these kernel functions? Let’s try to understand them.

We alluded to before that a popular approach to handling nonlinearity is to map

observation sample x to xF in feature space where conventional linear ML technique can

be applied.

However, the map 𝜑ሺ. ሻ is unknown. Thankfully, in the mathematical formulation of many

ML algorithms, the inner (or dot) product of feature vectors, 𝜑ሺ𝑥ሻ𝑇𝜑ሺ𝑥ሻ, is frequently

encountered. This inner product is denoted as

 𝜑ሺ𝑥ሻ: 𝑥 → 𝑥𝐹

 𝑘൫𝑥𝑖 , 𝑥𝑗൯ = < 𝜑ሺ𝑥𝑖ሻ, 𝜑൫𝑥𝑗൯ > = 𝜑ሺ𝑥𝑖ሻ𝑇𝜑൫𝑥𝑗൯

where k(.,.) is called the kernel function. Several forms of k(.,.) are available and the

most common form is Gaussian or radial basis function defined as

where, 𝛿 (a hyperparameter), is called kernel width. Usage of kernel functions allow

application of linear ML techniques in feature space without explicitly knowing the feature

vectors and this trick is called the ‘kernel trick’. Another term you will encounter in

kernelized algorithms is kernel matrix (often denoted as K). The (i, j)th element of K is

simply 𝑘൫𝑥𝑖, 𝑥𝑗൯. The table below lists the commonly used kernel functions

 𝑘൫𝑥𝑖 , 𝑥𝑗൯ = 𝑒𝑥𝑝 ቈ−
ሺ𝑥𝑖−𝑥𝑗ሻ

𝑇
ሺ𝑥𝑖−𝑥𝑗ሻ

𝜎2

Chapter 10: Multivariate Statistical Process Monitoring for Nonlinear Processes

MLforPSE.com|47

Let’s use the polynomial kernel to illustrate how using kernel functions amounts to higher

dimensional mapping. Assume that we use the following kernel

𝑘ሺ𝑥, 𝑧ሻ = ሺ𝑥𝑇𝑧 + 1ሻ
2

where 𝑥 = [𝑥1, 𝑥2]𝑇 and 𝑧 = [𝑧1, 𝑧2]𝑇 are two vectors in the original 2D space. We

claim that the above kernel is equivalent to the following mapping

𝜑ሺ𝑥ሻ = [𝑥1, 𝑥2, ξ2𝑥1, ξ2𝑥2, ξ2𝑥1𝑥2, 1]

To see how, just compute 𝜑ሺ𝑥ሻ𝑇𝜑ሺ𝑧ሻ

𝜑ሺ𝑥ሻ𝑇𝜑ሺ𝑧ሻ = 𝑥1
2𝑧1

2 + 𝑥2
2𝑧2

2 + 2𝑥1𝑧1 + 2𝑥2𝑧2 + 2𝑥1𝑥2𝑧1𝑧2 + 1

 = ሺ𝑥1𝑧1 + 𝑥2𝑧2 + 1ሻ2

 = ሺ𝑥𝑇𝑧 + 1ሻ2
 = 𝑘ሺ𝑥, 𝑧ሻ

Therefore, if you use the above polynomial kernel, you are implicitly projecting your data

onto a 6th dimensional feature space! If you were amazed by this illustration, you will find

it more interesting to know that Gaussian kernels map original space into an infinite

dimensional feature space! Luckily, we don’t need to know the form of this feature space.

Rest of the Chapter 10 not shown in this preview

48

Chapter 11
Process Monitoring of Multi-Mode Processes

n the previous chapters, we witnessed the benefits of customizing the conventional MSPM

techniques for non-Gaussian, dynamic, and nonlinear processes. In this chapter, we will

remove the last remaining restriction of unimodal operation. In your career, you will

frequently encounter industrial datasets that exhibit multiple operating modes due to

variations in production levels, feedstock compositions, ambient temperature, product grades,

etc., and data-points from different modes tend to group into different clusters. The mean and

covariance of process variables may be different under different operation models and

therefore, when you are building a monitoring tool, judicious incorporation of the knowledge

of these data clusters into process models will lead to better performance and, alternatively,

failure to do so will often lead to unsatisfactory monitoring performance.

In absence of specific process knowledge or when the number of variables is large, it is not

trivial to find the number of clusters or to characterize the clusters. Fortunately, several

methodologies are available which you can choose from for your specific solution. In this

chapter, we will learn different ways of working with multimodal data, some of the popular

clustering algorithms, and understand their strengths and weaknesses. We will conclude by

building a monitoring tool for a multimode semiconductor process. Specifically, the following

topics are covered

• Different methodologies for modeling multimodal process data

• Introduction to clustering

• Finding groups using classical k-means clustering

• Probabilistic clustering via Gaussian mixture modeling

• Process monitoring of multimode semiconductor manufacturing operation

I

Chapter 11: Process Monitoring for Multimode Processes

MLforPSE.com|49

11.1 Need and Methods for Specialized Handling

of Multimode Processes

In process systems, multimode operations occur naturally due to varied reasons. For

example, in a power generation plant, production level changes according to the demand

leading to significantly different values of plant variables with potentially different inter-variable

correlations at different production levels. The multimode nature of data distribution causes

problems with traditional ML techniques. To understand this, consider the illustrations in

Figure 11.1. In subfigure (a), data indicates 2 distinct modes of operation. From process

monitoring perspective, it would make sense to draw separate monitoring boundaries around

the two clusters; doing so would clearly identify the red-colored data-point as an outlier or a

fault. The Conventional PCA-based monitoring, on the other hand, would fail to identify the

outlier. In subfigure (b), the correlation between the variables is different in the two clusters.

It would make sense to build separate models for the two clusters to capture the different

correlation structure. The Conventional PLS model would give inaccurate results.

Figure 11.1: Illustrative scenarios for which conventional ML techniques are ill-suited

A few different methodologies have been adopted by the PSE community to monitor

multimode process operations. Let’s familiarize ourselves quickly with these.

Multiple model approach

Here, separate models are built for each of the clusters corresponding to the different

operation modes as shown in the figure below. Once the clusters have been characterized in

the training data and cluster-wise models have been built, prediction for a new sample can be

obtained by either only considering the cluster-model most suitable for the new sample or

combining the predictions from all the models as shown in Figure 11.2. The decision fusion

module can also take various forms. For example, for a process monitoring application, a

simple fusion strategy could be to consider a new sample as a normal sample if atleast one

of the cluster-models predict so. A different strategy could be to combine the abnormality

metrics from all the models and make prediction based on this fused metric. Similarly, for soft

sensing application, response variable prediction from individual models can be weighted and

combined to provide final prediction.

Chapter 11: Process Monitoring for Multimode Processes

MLforPSE.com|50

Figure 11.2: Multiple model approach for multimode processes

Lazy or just-in-time learning

In this approach, the model building exercise is carried out online. When new process data

come in, relevant data are fetched from the historical dataset that are similar to the incoming

samples based on some nearest neighborhood criterion. A local model is built using the

fetched relevant data. The obtained model processes the incoming samples and is then

discarded. A new local model is built when the next samples come in.

Figure 11.3: Steps involved in a just-in-time learning methodology

Step 1: Cluster determination using training data

Step 2: Decision Fusion

Chapter 11: Process Monitoring for Multimode Processes

MLforPSE.com|51

External analysis

In this strategy, the influence of process variables (called external variables) such as product

grade, feed flow, etc., that lead to multimode operation is removed from the other ‘main’

process variables and then the conventional MSPM techniques are employed on the ensuing

residuals as shown in the figure below.

Figure 11.4: External analysis approach for multimode data

External variables

Measured main

variables

Predicted main

variables

Residuals Conventional ML

modeling

Process

Model

Rest of the Chapter 11 not shown in this preview

52

Part 4

Classical Machine Learning Methods for Process

Monitoring

53

Chapter 12
Support Vector Machines for Fault Detection

n the previous chapters, we focused on multivariate statistical process monitoring methods

that modelled process data through extraction of latent variables. In this part of the book,

we will cover several classical ML techniques that come in handy in building process

monitoring applications. These techniques do not attempt to build any statistical model of the

underlying data distribution. Rather, the measurement space itself may be segregated into

favorable/unfavorable regions, high-density/low-density regions, or pair-wise distances

maybe computed to generate monitoring metrics, etc. SVM (support vector machine) is one

such algorithm which excels in dealing with high-dimensional, nonlinear, and small or

medium-sized data.

SVMs are extremely versatile and can be employed for classification and regression tasks in

both supervised and unsupervised settings. SVMs, by design, minimize overfitting to provide

excellent generalization performance. Infact, before ANNs became the craze in ML

community, SVMs were the toast of the town. Even today, SVM is a must-have tool in every

ML practitioner’s toolkit. You will find more about SVMs as you work through this chapter. In

terms of uses in process industry, SVMs have been employed for fault classification, fault

detection, outlier detection, soft sensing, etc. We will focus on process monitoring-related

usage in this chapter.

To understand different aspects of SVMs, we will cover the following topics

• Fundamentals of SVMs

• Kernel SVMs

• SVDD (support vector data description) for unsupervised classification

• Fault detection via SVDD for semiconductor manufacturing process

I

Chapter 12: Support Vector Machines for Fault Detection

MLforPSE.com|54

12.1 SVMs: An Introduction

The classical SVM is a supervised linear technique for solving binary classification problems.

For illustration, consider Figure 12.1a. Here, in a 2D system, the training data-points belong

to two distinct (positive and negative) classes. The task is to find a line/linear boundary that

separates these 2 classes. Two sample candidate lines are also shown. While these lines

clearly do the stated job, something seems amiss. Each of them passes very close to some

of the training data-points. This can cause poor generalization: for example, the shown test

observation ‘A’ lies closer to the positive samples but will get classified as negative class by

boundary L2. This clearly is undesirable.

Figure 12.1: (a) Training data with test sample A (b) Optimal separating boundary

The optimal separating line/decision boundary, line L3 in Figure 12.1b, lies as far away as

possible from either class of data. L3, as shown, lies midway of the support planes (planes

that pass-through training points closest to the separating boundary). During model fitting,

SVM simply finds this optimal boundary that corresponds to the maximum margin (distance

between the support planes). In Figure 12.1, any other orientation or position of L3 will reduce

the margin and will make L3 closer to one class than to the other. Large margins make model

predictions robust to small perturbations in the training samples.

Points that lie on the support planes are called support vectors13 and completely determine

the optimal boundary, and hence the name, support vector machines. In Figure 12.1, if

support vectors are moved, line L3 may change. However, if any non-support vectors are

removed, L3 won’t get affected at all. We will see later how the sole dependency on the

support vectors imparts computational advantage to the SVMs.

13 Calling data-points as vectors may seem weird. While this terminology is commonly used in general SVM literature,
support vectors refer to the vectors originating from origin with the data-points on support planes as their tips.

Chapter 12: Support Vector Machines for Fault Detection

MLforPSE.com|55

Rest of the Chapter 12 not shown in this preview

56

Chapter 13
Decision Trees and Ensemble Learning for

Fault Detection

magine that you are in a situation where even after your best attempts your model could

not provide satisfactory performance. What if we tell you that there exists a class of

algorithms where you can combine several ‘versions’ of your ‘weak’ performing models

and generate a ‘strong’ performer that can provide more accurate and robust predictions

compared to its constituent ‘weak’ models? Sounds too good to be true? It’s true and these

algorithms are called ensemble methods.

Ensemble methods are often a crucial component of winning entries in online ML competitions

such as those on Kaggle. Ensemble learning is based on a simple philosophy that committee

wisdom can be better than an individual’s wisdom! In this chapter, we will look into how this

works and what makes ensembles so powerful. We will study popular ensemble methods like

random forests and XGBoost.

The base constituent models in forests and XGBoost are decision trees which are simple yet

versatile ML algorithms suitable for both regression and classification tasks. Decision trees

can fit complex and nonlinear datasets, and yet enjoy the enviable quality of providing

interpretable results. We will look at all these features in detail. Specifically, we will cover the

following topics

• Introduction to decision trees and random forests

• Introduction to ensemble learning techniques (bagging, Adaboost, gradient boosting)

• Fault detection and classification for gas boilers using decision trees and XGBoost

I

Chapter 13: Decision Trees and Ensemble Learning for Fault Detection

MLforPSE.com|57

13.1 Decision Trees: An Introduction

Decision trees (DTs) are inductive learning methods which derive explicit rules from data to

make predictions. They partition the feature space into several (hyper) rectangles and then fit

a simple model (usually a constant) in each one. As shown in Figure 13.1 for a binary

classification problem in 2D feature space, the partition is achieved via a series of if-else

statements. As shown, the model is represented using branches and leaves which lead to a

tree-like structure and hence the name decision tree model. The questions asked at each

node make it very clear how the model predictions (class A or class B) are being generated.

Consequently, DTs become the model of choice for applications where ease of rationalization

of model results is very important.

Figure 13.1: A decision tree with constant model used for binary classification in a 2D space

The trick in DT model fitting lies in deciding which questions to ask in the if-else statements

at each node of the tree. During fitting, these questions split the feature space into smaller

and smaller subregions such that the training observations falling in a subregion are similar

to each-other. The splitting process stops when no further gains can be made or stopping

criteria have been met. Improper choices of splits will generate a model that does not

generalize well. In the next subsection, we will study a popular DT training algorithm called

CART (classification and regression trees) which judiciously determines the splits.

Mathematical background

CART algorithm creates a binary tree, i.e., at each node two branches are created that split

the dataset in such a way that overall data ‘impurity’ reduces. To understand this, consider

Chapter 13: Decision Trees and Ensemble Learning for Fault Detection

MLforPSE.com|58

Rest of the Chapter 13 not shown in this preview

59

Chapter 14
Proximity-based Techniques for Fault

Detection

ost of the anomaly detection techniques that we have studied so far work by finding

some structure in training dataset, such as the low-dimensional manifold in PCA,

NOC boundary in SVDD, optimal separating hyperplane in SVM, etc. However,

another popular class of methods exists that utilizes a very straightforward and natural notion

of anomalies as data points that are far away or isolated from the NOC data samples; logically,

these methods are classified as proximity-based methods.

Proximity of a data point can simply be defined as its distance (as done in k-NN method) from

its neighbors. An abnormal data point lies far away from other NOC data and therefore, its

nearest neighbors’ distances will be large compared to those for NOC samples. Another

related but slightly different notion of proximity is the density or number of other data points in

a local region around a test sample. Local outlier factor (LOF) is a popular method in this

category wherein samples not lying in dense region are classified as anomalies. The third

technique, isolation forest (IF), that we will study in this chapter uses the similar notion that

anomalies are ‘far and between’. Here, the data space is split until each data point gets

‘isolated’. Anomalies can be isolated easily and require very few splits compared to NOC

samples that lie close to each other.

You may have realized that these techniques generate interpretable results and are easy to

understand. Correspondingly, they come in pretty handy to analyze complex system whose

characteristics may not be well-known a priori. Let’s now get down to business. We will cover

the following topics

• Introduction to k-NN technique

• Introduction to LOF technique

• Introduction to isolation forest technique

• Applications of k-NN, LOF, and IF for fault detection in semiconductor manufacturing

process

M

Chapter 14: Proximity-based Techniques for Fault Detection

MLforPSE.com|60

14.1 KNN: An Introduction

The k-nearest neighbors (k-NN or KNN) algorithm is a versatile technique based on a simple

intuitive idea that the label/value for a new sample can be obtained from the labels/values of

closest neighboring samples (in the feature space) from the training dataset. The parameter

k denotes the number of neighboring samples utilized by the algorithm. As shown in Figure

14.1, k-NN can be used for both classification and regression. For classification, k-NN assigns

test sample to the class that appears the most amongst the k neighbors. For regression, the

predicted output is the average of the value of the k neighbors. Due to its simplicity, k-NN is

widely used for pattern classification and was included in the list of top 10 algorithms in data

mining.14

Figure 14.1: k-NN illustration for classification (left) and regression (right). Yellow data point

denotes unknown test sample. The grey-shaded region represents the neighborhood with 3

nearest samples.

k-NN belongs to the class of lazy learners where models are not built explicitly

until test samples are received. At the other end of the spectrum, eager

learners (like, SVM, decision trees, ANN) ‘learn’ explicit models from training

samples. Unsurprisingly, training is slower, and testing is faster for eager

learners. KNN requires computing the distance of the test sample from all the

training samples, therefore, k-NN also falls under the classification of instance-

based learning. Instance-based learners make predictions by comparing the

test sample with training instances stored in memory. On the other hand,

model-based learners do not need to store the training instances for making

predictions.

14 Wu et al., Top 10 algorithms in data mining. Knowledge and Information systems, 2008.

Chapter 14: Proximity-based Techniques for Fault Detection

MLforPSE.com|61

Rest of the Chapter 14 not shown in this preview

62

Part 5

Artificial Neural Networks for Process Monitoring

63

Chapter 15
Fault Detection & Diagnosis via Supervised

Artificial Neural Networks Modeling

t won’t be an exaggeration to say that artificial neural networks (ANNs) are currently the

most powerful modeling construct for describing generic nonlinear processes. ANNs can

capture any kind of complex nonlinearities, don’t impose any specific process

characteristics, and don’t demand specification of process insights prior to model fitting.

Furthermore, several recent technical breakthroughs and computational advancements have

enabled (deep) ANNs to provide remarkable results for a wide range of problems.

Correspondingly, ANNs have re(caught) the fascination of data scientists and the process

industry is witnessing a surge in successful applications of ML-based process control,

predictive maintenance, inferential modeling, and process monitoring.

ANNs can be used in both supervised and unsupervised learning settings. While we will cover

the supervised learning-based FDD applications of ANNs in this chapter, unsupervised

learning is covered in the next chapter. Supervised fitting of ANN models are applicable if you

have adequate number of historical faulty samples (so that you can fit a fault classification

model) or your signals are categorizable into predictors and response variables (so that you

can fit a regression model and monitor residuals). Different forms of ANN architectures have

been devised (such as FFNNs, RNNs, CNNs) to deal with datasets with different

characteristics. CNNS are mostly used with image data and therefore, we will study FFNN

and RNN in this chapter.

There is no doubt that ANNs have proven to be monstrously powerful. However, it is not easy

to tame this monster. If the model hyperparameters are not set judiciously, it is very easy to

end up with disappointing results. The reader is referred to Part 3 of Book 1 of this series for

a detailed exposition on ANN training strategies and different facets of ANN models. In this

chapter, the focus is on exposing the user to how ANNs can be used to build process

monitoring applications. Specifically, the following topics are covered

• Introduction to ANNs

• Introduction to RNNs

• Process monitoring using ANNs via external analysis

I

Chapter 15: Fault Detection & Diagnosis via Supervised Artificial Neural Networks Modeling

MLforPSE.com|64

15.1 ANN: An Introduction

Artificial neural networks (ANNs) are nonlinear empirical models which can capture complex

relationships between input-output variables via supervised learning or recognize data

patterns via unsupervised learning. Architecturally, ANNs were inspired by human brain and

are a complex network of interconnected neurons as shown in Figure 15.1. An ANN consists

of an input layer, a series of hidden layers, and an output layer. The basic unit of the network,

neuron, accepts a vector of inputs from the source input layer or the previous layer of the

network, takes a weighted sum of the inputs, and then performs a nonlinear transformation to

produce a single real-valued output. Each hidden layer can contain any number of neurons.

Figure 15.1: Architecture of a single neuron and feedforward neural network with 2 hidden layers

The network shown in Figure 15.1 is an example of a fully-connected feed-forward neural

network (FFNN), the most common type of ANN. In FFNN, signals flow in only one direction,

from the input layer to the output layer via hidden layers. Neurons between consecutive layers

are connected fully pairwise and neurons within a layer are not connected.

 What is deep learning

In a nutshell, using an ANN with a large number of hidden layers to find

relationship/pattern in data is deep learning (technically, ≥ 2 hidden layers

implies a deep neural network (DNN)). Several recent algorithmic

innovations have overcome the model training issues for DNNs which

have resulted in the DNN-led AI revolution we are witnessing today.

Nonlinear mapping

f(.)

Chapter 15: Fault Detection & Diagnosis via Supervised Artificial Neural Networks Modeling

MLforPSE.com|65

Rest of the Chapter 15 not shown in this preview

66

Chapter 16
Fault Detection & Diagnosis via Unsupervised

Artificial Neural Networks Modeling

n the previous chapter, we looked at supervised fitting of artificial neural networks where

either the faults labels were available for historical samples or the process variables were

divided into predictors and response variable sets. However, you are very likely to

encounter situations where you only have NOC samples in your training dataset without any

predictor/response division. In Part 3 of this book, we studied a powerful technique suitable

for such datasets, called PCA; PCA, however, is limited to linear processes. Nonetheless, the

underlying mechanism of extracting the most representative features of training dataset and

compressing it into a feature space with reduced dimensionality need not be limited to linear

systems. ANNs excel at handling nonlinear systems and extracting hidden patterns in high-

dimensional datasets. Unsurprisingly, clever neural network-based architectures have been

devised to enable unsupervised fitting of nonlinear datasets. Two popular models in this

category are autoencoders (AEs) and self-organizing maps (SOMs)

Autoencoders are ANN-based counterparts of PCA for nonlinear processes. Here, low-

dimensional latent feature space is derived via nonlinear transformation and, just like we did

for PCA, the systematic variations in the feature space and the reconstruction errors are

handled separately to provide the monitoring statistics. Autoencoders are very popular for

building FDD solutions for nonlinear processes. They are also commonly used to provide

intermediate low-dimensional features which are then used for subsequent modeling

(clustering, fault classification, etc.). SOM is another variant of neural network-based

architecture that project a high-dimensional dataset onto a 2D grid (yes, you read that right!).

Here, latent variables are not derived, albeit the focus is on ensuring that the topology of the

projected data is similar to that in the original measurement space. This feature renders SOMs

very useful for data visualization, clustering, and fault detection applications.

We will undertake in depth study of both these powerful techniques in this chapter.

Specifically, the following topics are covered

• Introduction to autoencoders and self-organizing maps

• Fault detection and diagnosis using autoencoders: application to FCCU process

• Fault detection and diagnosis using SOMs: application to semiconductor dataset

I

Chapter 16: Fault Detection & Diagnosis via Unsupervised Artificial Neural Networks Modeling

MLforPSE.com|67

16.1 Autoencoders: An Introduction

An autoencoder (AE) in its basic form is a 3-layered ANN consisting of an input layer, a hidden

layer, and an output layer as shown in Figure 16.1. An AE takes an input 𝑥 ∈ ℝ𝑛 and predicts

a reconstructed �̂� ∈ ℝ𝑛 as an output. To prevent the network from trivially copying 𝑥 to �̂�, the

hidden layer is constrained to be much smaller than n (the number of neurons in the hidden

layer, say m, gives the dimension of the latent/feature space). This forces the network to

capture only the systematic variations in input data and learn only the most representative

features as the latent variables. The nonlinear activation function of the neurons in the hidden

layer enables the latent variables to be nonlinearly related to the input variables. During model

fitting, the gap between 𝑥 and �̂� (termed reconstruction error) is minimized to find network

parameters. The basic AE network can be made deeper by adding more hidden layers

resulting in deep (or stacked) autoencoders.

Figure 16.1: Autoencoder architecture

𝑊
1 ,𝑏

1

𝑊
2 ,𝑏

2

ℎ = 𝑓ሺ𝑊1𝑥 + 𝑏1ሻ Latent variables:

B
a

s
ic

 A
E

(𝑊

1
,𝑊

2
,𝑏

1
,𝑏

2
 a

re
 n

e
tw

o
rk

 p
a
ra

m
e
te

rs
)

⋮

⋮

Latent variables

S
ta

c
k
e
d
 A

E

Bottleneck layer

Chapter 16: Fault Detection & Diagnosis via Unsupervised Artificial Neural Networks Modeling

MLforPSE.com|68

The symmetrical and sandwich nature of the deep AE architecture should be apparent

wherein the sizes of the layers first decrease and then increase. Care must be taken though

to not use too many hidden layers; otherwise, the network will overfit and may simply learn

the identity mapping from 𝑥 to �̂�! Moreover, in the previous figure, you will notice that AE

architecture is divide into an encoder part and a decoder part. An encoder projects or codify

an input sample x to lower dimensional feature h. The decoder maps the feature vector back

to the input space. The encoder-decoder form makes the AR architecture very flexible. Once

an AE has been trained, one can use the encoder as a standalone network to obtain the latent

variables. Moreover, you are not limited to using only FFNN in the encoders and decoders.

RNNs and CNNs are also frequently employed. RNN-based AE is used as a nonlinear

counterpart of dynamic PCA.

Vanilla AE vs Denoising AE

The form of autoencoder we saw in Figure 16.1 is the conventional or vanilla form wherein

the network is forced to find patterns in data by constraining the size of coding/latent

variable (m) to be less than the size of input variable (n). This is also called an

undercomplete autoencoder. An alternative way of forcing an autoencoder to learn only

the systematic variation in data is by corrupting input data by adding synthetic noise and

then training the network to reconstruct the uncorrupted input. Such autoencoders are

called denoising autoencoders and its representative architecture is shown below. Note

that we did not explicitly represent encoder having number of neurons in hidden layer less

than the number of input variables. Denoising AE allow having 𝑚 ≥ 𝑛.

Chapter 16: Fault Detection & Diagnosis via Unsupervised Artificial Neural Networks Modeling

MLforPSE.com|69

Dimensionality reduction via autoencoders

To see autoencoders in action, let’s apply it for the dimensionality reduction of a simulated

dataset from a fluid catalytic cracking unit (FCCU15) shown in Figure 16.2. FCCUs are critical

units in modern oil refineries and convert heavy hydrocarbons into lighter and valuable

products such as LPG, gasoline, etc. As shown, the FCCU operation involves catalytic

reaction, catalyst regeneration, and distillation. A total of 46 signals are made available as

outputs (recorded every minute). Data has been provided in 7 CSV files. Each file contains

data from one simulation. One of the CSV files contain NOC data over a period of 7 days with

varying feed flow. Five faults have been simulated one at a time in 5 separate simulations.

We will work with the 7 days of NOC data.

Figure 16.2: Fluid catalytic cracking unit with available measurements

We know that most of the variability in the data is driven from the variations in the feed flow

and therefore, we will attempt to generate a 1D latent space (m=1).

import required packages

import numpy as np, pandas as pd, matplotlib.pyplot as plt

import tensorflow

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

15 Details on the system and datasets available are provided in detail at https://mlforpse.com/fccu-dataset/.

Chapter 16: Fault Detection & Diagnosis via Unsupervised Artificial Neural Networks Modeling

MLforPSE.com|70

Rest of the Chapter 16 not shown in this preview

71

Part 6

Vibration-based Condition Monitoring

72

Chapter 17
Vibration-based Condition Monitoring: Signal

Processing and Feature Extraction

otating machinery, which includes motors, compressors, pumps, turbines, fans, etc.,

form the backbone of industrial operations. Unsurprisingly, a large fraction of operation

downtime can be attributed to the failures of these machines. Over the last decade,

the process industry has adopted predictive maintenance as the means to proactively handle

these failures and the technique that has largely become synonymous with predictive

maintenance is vibration-based condition monitoring (VCM). All rotating machines exhibit

vibratory motions and different kind of faults produce characteristic vibratory signatures. This

makes VCM a reliable and effective tool for health management of rotating equipment.

Considering the importance of VCM in process industry, its different aspects are covered in

this part of the book.

Vibrations are usually measured at very high frequency and the large volume of data makes

analysis of raw data difficult. Correspondingly, processing vibration data and extracting

meaningful features that can provide early signs of failures become very crucial. Traditionally,

these features have been analyzed by vibration experts. However, in recent times, several

successful applications of ML-based VCM have been reported. All the techniques that we

have studied in the previous parts of the book can be used for VCM. While we will look at ML-

based VCM in the next chapter, this chapter sets the foundations for VCM and covers vibration

data processing and feature extraction.

Over the years, VCM practitioners and researchers have fine-tuned the art of vibration

monitoring and have come up with several specialized and advanced techniques. Arguably,

it is easy for a beginner to feel ‘lost’ in the world of VCM. The current and the following

chapters will help provide some order to this seemingly chaotic world. Specifically, the

following topics are covered

• Basics of vibrations

• VCM workflow

• Spectral analysis of vibration signal

• Time domain, frequency domain, and time-frequency domain feature extraction

R

Chapter 17: Vibration-based Condition Monitoring: Signal Processing and Feature Extraction

MLforPSE.com|73

17.1 Vibration: A Gentle Introduction

Vibrations are simply back and forth motion of machines around their position of rest. All

rotating machines (motors, blowers, chillers, compressors, turbines, etc.) exhibit vibratory

motion under normal and faulty conditions. Figure 17.1 shows a representative setup for

vibration sensing of an industrial machine. The sensors (transducers) convert vibratory motion

(of displacement, velocity, or acceleration) into analogue electrical signals which are digitized

and stored. The figure below shows how the recorded signal looks like on a time-axis for a

machine with gradually degrading condition. The increasing vibration levels indicate

underlying machine issues.

Figure 17.1: Representative vibration monitoring system16

The components of rotating machines (rotors, bearings, gears) undergo different types of

failures due to well-studies causes such as mechanical looseness, misalignment, cracks, etc.

16 Romanssini et al., A Review on Vibration Monitoring Techniques for Predictive Maintenance of Rotating Machinery.
Eng, 2023. This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Motor

Chapter 17: Vibration-based Condition Monitoring: Signal Processing and Feature Extraction

MLforPSE.com|74

Rest of the Chapter 17 not shown in this preview

75

Chapter 18
Vibration-based Condition Monitoring: Fault

Detection & Diagnosis

ibration-based condition monitoring was already a widely adopted technique in process

industry long before ML craze took over the manufacturing world. The International

Organization for Standardization (ISO) has come up with alarm limits for vibration RMS

for different classes of rotating machines. Additionally, VCM researchers have worked

diligently to discover the characteristics signatures of failures in different components of a

rotating machines. Correspondingly, several rules of thumb and heuristics have been devised

to pinpoint root causes of faults using vibration features. However, these heuristics do not

cover all possible fault scenarios and a vibration expert is still required to conduct analysis

and interpretation of vibration signal features. Fortunately, the advent of machine learning has

made VCM more accessible to generic process data scientists.

Several different types of ML models have been reported in VCM literature for fault

classification, fault detection, and fault diagnosis. For example, fault detection applications

have been built by using the whole spectrum (or waveform) as input to an autoencoder or

spectrogram image as input to a CNN (convolutional neural network) model. ML models don

the cap of a vibration expert to find the patterns in vibration signal, distinguish between NOC

and abnormal vibrations, and discriminate between different fault conditions. In this chapter,

we will look at one such implementation of ML-based VCM. Specifically, the following topics

are covered

• VCM workflow

• Classical approaches for VCM

• SVM-based fault classification of motors

V

Chapter 18: Vibration-based Condition Monitoring: Fault Detection & Diagnosis

MLforPSE.com|76

18.1 VCM Workflow: Revisited

Vibration signals contain indicators of machine faults. Previously, we saw the steps commonly

taken to ‘amplify’ these indicators through judicious extraction of features. In this chapter, we

will focus on how these features are used to make inferences regarding health of rotating

machinery. Figure 18.1 shows some of the approaches commonly employed. The classical

approaches include, amongst others, simply looking for the presence of harmonics in the

spectrum and comparing individual features against ISO-recommended thresholds. In recent

times, ML-based VCM is gradually becoming more popular. Any of the ML techniques that we

have seen in the previous parts of the book can be employed.

Figure 18.1: Vibration condition monitoring workflow - revisited

Signal Preprocessing

• Mean removal, Trend removal, Noise removal, Filtering Data

acquisition

Signal Processing

• Frequency domain representation (e.g., FFT)

• Time frequency domain representation (e.g., STFT)

Feature extraction (and selection)

Time waveform

- Spectrum

- Spectrogram

• Time domain, frequency domain, time-frequency domain

features

Fault detection & diagnosis

Classical approaches ML approaches

ISO limits

3𝝈 control charts

Harmonics-based diagnostics

Deep learning

Fault classification via SVM, KNN, FFNN

Fault detection via PCA, SVDD, LOF

Chapter 18: Vibration-based Condition Monitoring: Fault Detection & Diagnosis

MLforPSE.com|77

Rest of the Chapter 18 not shown in this preview

78

Part 7

Predictive Maintenance

79

Chapter 19
Fault Prognosis: Concepts & Methodologies

ll machines eventually break and plant operators have traditionally relied upon regular

time-based (preventive) maintenance to avoid costly downtimes due to machinery

failures. Although economically inefficient, preventive maintenance remained the

default approach in process industry for a long time. Only in recent times, condition-based

maintenance approach has gained widespread acceptance wherein a machine’s real-time

data is used to assess the machine’s health, detect failures, and trigger (on-demand)

maintenance. However, the recent advancement in data mining has brought another step

change in the mindset of plant reliability personnel: mere detection of machine faults is no

longer good enough; accurate forecast of the fault’s progression leading to predictive

maintenance (PdM) is the new vogue. The lure of PdM is obvious – it facilitates advance

planning of maintenance, better management of spare part’s inventory, etc. Correspondingly,

PdM is the holy grail that industrial executives are striving for to remain competitive.

PdM, in essence, involves fault prognosis or the prediction of a machine’s health degradation

over time after detection of incipient faults. Different PdM methodologies are employed

depending on the availability of fundamental knowledge of fault’s mechanism, historical run-

to-failure data, etc. The dominant PdM approach involves computation of a health indicator

(HI) that summarizes the state of a machine health and shows a clear degradation trend as

an incipient fault progresses from incipience to high severity. HI allows computation of RUL

(remaining useful life) which is the remaining time until fault severity crosses failure threshold

necessitating the machine being taken out of service.

Several different strategies have been devised for computation of HIs and the subsequent

RUL estimation. While the RUL estimation strategies are covered in detail in the next chapter,

this chapter focusses on the data-driven methods for HI computations. Specifically, the

following topics are covered

• Concepts and methodologies for PdM

• Fault prognosis: introduction and workflow

• Approaches for health indictor computation

• Fault prognosis case study for wind turbines

A

Chapter 19: Fault Prognosis: Concepts & Methodologies

MLforPSE.com|80

19.1 Fault Prognosis: Introduction & Workflow

Fault prognosis simply refers to the task of estimating the progression of health degradation

of a machine17. Fault prognosis kick in after a fault has been detected. The end objective of

fault prognosis is to estimate the time remaining until fault severity hits failure threshold. A

machine or an operation unit may be kept in operation (even with faults) until it reaches failure

conditions. Therefore, estimation of the time remaining or RUL can help plant operators

maximize an equipment lifetime and plan maintenance judiciously. Figure 19.1 presents the

different prognostic methodologies that can be employed depending on the level of available

information about fault mechanism and past fault data.

Figure 19.1: Prognostics Methodologies

Among the shown approaches, HI-based approach is very popular. A shown in Figure 19.2,

a curve showing the current trend of fault severity or health condition is computed. Thereafter,

the future progression of the curve is predicted to estimate the RUL. In this chapter, we will

look at how such curves can be generated in a data-driven way. The strategy for HI forecast

is covered in detail in the next chapter.

17 Fault prognosis is not limited to health prediction of machines only. It is applicable to a subprocess of a plant and the
whole plant as well.

• Uses information

about distribution of

equipment lifetime

• Weibull distribution is

frequently applied

• Easily applicable but

requires a lot of

information on past

failures

Fault Prognosis Methodologies

Physics-based Statistics-based Data-driven Hybrid method

• First-principles

approach

• Understanding of

fault mechanism

required

• Time consuming

• Equipment’s process

data are used to

determine current

and future health

status

• Combination of other

three approaches

Regression approach Forecast approach

• If enough historical run-to-

failure data is available,

then RUL is directly

predicted as a function of

current and past data using

ML models

• Health indicator of

equipment is constructed

and forecasted to estimate

when acceptable health

threshold may be breached

Chapter 19: Fault Prognosis: Concepts & Methodologies

MLforPSE.com|81

Figure 19.2: Fault severity and health condition progression with time

Fa
u

lt
 s

ev
er

it
y

Failure threshold

time
healthy stage

fault

detected

fault onset

Predicted end

of useful life

distribution of

estimated RUL

RUL H
ea

lt
h

 c
o

n
d

it
io

n

time

RUL

0

1

Rest of the Chapter 19 not shown in this preview

82

Chapter 20
Fault Prognosis: RUL Estimation

n the previous chapter, we introduced the concept of remaining useful life which is simply

the time remaining until failure of an equipment. Three broad data-based techniques were

mentioned that are: 1) reliability data-based approach wherein lifespan distribution of

similar equipment is utilized to find the expected RUL 2) direct computation of RUL via

regression-based ML modeling 3) computation of health indicator as an intermediate step.

The first two approaches require information about the past lifespan of equipment and

complete run-to-failure histories. However, it is difficult to get these data in process industry

as very often machines get repaired before they reach failure stages (remember preventive

maintenance!). This makes HI-based approach more suitable and, unsurprisingly, more

popular. In the previous chapter, we saw how to compute HI for a wind turbine. We will take

this case study to completion and show how to estimate the RUL.

Within the HI-based approach, two strategies are widely adopted. If decent amount of past

run-to-failure data are available, then one can simply pick up the historical HI trend that

matches the most with the current equipment’s HI trajectory and use the historical lifespan to

compute the required RUL. This is called similarity-based approach. A popular alternative is

to simply use the existing HI values of current equipment and fit a curve to it to extrapolate it

in the future and find when the failure threshold is breached. This is called degradation-based

approach. We will go into more details into these two strategies in this chapter. Overall, the

following topics are covered

• Introduction to RUL

• Health indicator-based RUL estimation strategies

• Health indicator degradation modeling for RUL estimation of a wind turbine

• Deep learning-based direct RUL estimation for a gas turbine

I

Chapter 20: Fault Prognosis: RUL Estimation

MLforPSE.com|83

20.1 RUL: Revisited

In the previous chapter, we looked at some broad classes of strategies for RUL estimation.

We also looked at how a health indicator can be calculated. Figure 20.1 reproduces Figure

19.1 and adds more details regarding HI-based approaches for RUL computation. The figure

also highlights the four commonly employed strategies. As alluded to earlier, the choice of

model depends on the type and amount of information available on past failures. If large

amount of past run-to-failure data are available, then one can build a deep learning model to

directly predict the RUL. We will see one such application in this chapter.

Figure 20.1: Prognostics Methodologies

• Builds a model using HI values

from healthy state to current

faulty state

• Uses model to forecast HI values

• Uses Hi trajectories from past run-

to-failure histories

• Select trajectories most similar to

the current machine’s HI trajectory

• The time-lengths of the selected

trajectories give the RUL

• Uses information

about distribution of

equipment lifetime

• Weibull distribution is

frequently applied

• Easily applicable but

requires a lot of

information on past

failures

Fault Prognosis Methodologies

Physics-based Statistics-based Data-driven Hybrid method

• First-principles

approach

• Understanding of

fault mechanism

required

• Time consuming

• Equipment’s process

data are used to

determine current

and future health

status

• Combination of other

three approaches

Regression approach Forecast (/HI-based) approach

• If enough historical run-to-

failure data is available,

then RUL is directly

predicted as a function of

current and past data using

ML models

• Health indicator of

equipment is constructed

and forecasted to estimate

when it breaches

acceptable health threshold

Trajectory similarity-based Degradation model-based

approach

Chapter 20: Fault Prognosis: RUL Estimation

MLforPSE.com|84

End of the book

Rest of the Chapter 20 not shown in this preview

Machine Learning in Python for Process and Equipment

Condition Monitoring, and Predictive Maintenance

Of process data science, By process data scientists, For process data scientists

This book is designed to help readers quickly gain a working-level knowledge of

machine learning-based techniques that are widely employed for building equipment

condition monitoring, plantwide monitoring, and predictive maintenance solutions in

process industry. The book covers a broad spectrum of techniques ranging from

univariate control charts to deep-learning-based prediction of remaining useful life.

Consequently, the readers can leverage the concepts learned to build advanced

solutions for fault detection, fault diagnosis, and fault prognostics. The application-

focused approach of the book is reader friendly and easily digestible to the practicing

and aspiring process engineers, and data scientists. Upon completion, readers will be

able to confidently navigate the Prognostics and Health Management literature and

make judicious selection of modeling approaches suitable for their problems.

The following topics are broadly covered:

• Exploratory analysis of process data

• Best practices for process monitoring and predictive maintenance solutions

• Univariate monitoring via control charts and time-series data mining

• Multivariate statistical process monitoring techniques (PCA, PLS, FDA, etc.)

• Machine learning and deep learning techniques to handle dynamic, nonlinear,

and multimodal processes

• Fault detection and diagnosis of rotating machinery using vibration data

• Remaining useful life predictions for predictive maintenance

www.MLforPSE.com

